Abstract
We give a survey of a function-analytic approach in the study of primitivity of matrix families and of synchronizing automata. Then we define the m-synchronising automata and prove that the existence of a reset m-tuple of a deterministic automata with n states can be decided in less than \(m n^2 \bigl (\log _2 n + \frac{m+4}{2}\bigr )\) operations. We study whether the functional-analytic approach can be extended to m-primitivity and to m-synchronising automata. Several open problems and conjectures concerning the length of m-reset tuples, m-primitive products and finding those objects algorithmically are formulated.
The research is supported by FRBR grants 17-01-00809 and 19-04-01227.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alpin, Yu.A., Alpina, V.S.: Combinatorial properties of irreducible semigroups of nonnegative matrices. J. Math. Sci. (N. Y.) 191(1), 4–9 (2013)
Alpin, Yu.A., Alpina, V.S.: A new proof of the Protasov-Voynov theorem on semigroups of nonnegative matrices. Math. Notes 105, 805–811 (2019)
Berlinkov, M.V., Szykula, M.: Algebraic synchronization criterion and computing reset words. Inf. Sci. 369, 718–730 (2016)
Blondel, V.D., Jungers, R.M., Olshevsky, A.: On primitivity of sets of matrices. Automatica 61, 80–88 (2015)
Cabrelli, C.A., Heil, C., Molter, U.M.: Self-similarity and Multiwavelets in Higher Dimensions, vol. 170, no. 807. Memoirs of the American Mathematical Society (2004)
Cavaretta, A.S., Dahmen, W., Micchelli, C.A.: Stationary Subdivision, vol. 93, no. 453. Memoirs of the American Mathematical Society (1991)
Fornasini, E.: 2D Markov chains. Linear Algebra Appl. 140, 101–127 (1990)
Fornasini, E., Valcher, M.: Directed graphs, 2D state models and characteristic polynomials of irreducible matrix pairs. Linear Alg. Appl. 263, 275–310 (1997)
Fornasini, E., Valcher, M.: A polynomial matrix approach to the structural properties of 2D positive systems. Linear Algebra Appl. 413(2–3), 458–473 (2006)
Gao, Y., Shao, Y.: Generalized exponents of primitive two-colored digraphs. Linear Algebra Appl. 430(5–6), 1550–1565 (2009)
Gerencsér, B., Gusev, V.V., Jungers, R.M.: Primitive sets of nonnegative matrices and synchronizing automata. SIAM J. Matr. Anal. 39(1), 83–98 (2018)
Olesky, D.D., Shader, B., van den Driessche, P.: Exponents of tuples of nonnegative matrices. Linear Algebra Appl. 356(1–3), 123–134 (2002)
Protasov, V.Yu.: Extremal \(L_p\)-norms of linear operators and self-similar functions. Linear Alg. Appl. 428(10), 2339–2356 (2008)
Protasov, V.Yu.: Semigroups of non-negative matrices. Russian Math. Surv. 65(6), 1186–1188 (2010)
Protasov, V.Yu.: Classification of \(k\)-primitive sets of matrices. SIAM J. Matrix Anal. 34(3), 1174–1188 (2013)
Protasov, V.Yu., Voynov, A.S.: Sets of nonnegative matrices without positive products. Linear Alg. Appl. 437(3), 749–765 (2012)
Voynov, A.S., Protasov, V.Yu.: Compact noncontraction semigroups of affine operators. Sb. Math. 206(7), 921–940 (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Protasov, V.Y. (2019). Primitivity and Synchronizing Automata: A Functional Analytic Approach. In: Filiot, E., Jungers, R., Potapov, I. (eds) Reachability Problems. RP 2019. Lecture Notes in Computer Science(), vol 11674. Springer, Cham. https://doi.org/10.1007/978-3-030-30806-3_2
Download citation
DOI: https://doi.org/10.1007/978-3-030-30806-3_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-30805-6
Online ISBN: 978-3-030-30806-3
eBook Packages: Computer ScienceComputer Science (R0)