Skip to main content

A Concept of Smart Medical Autonomous Distributed System for Diagnostics Based on Machine Learning Technology

  • Conference paper
  • First Online:
Internet of Things, Smart Spaces, and Next Generation Networks and Systems (NEW2AN 2019, ruSMART 2019)

Abstract

Telemedicine is a promising direction in the development of medical technologies for the interaction of patients with doctors at a distance. In this paper, we consider the use of telemedicine technologies for the development of smart medical autonomous technology. An example of a smart medical autonomous distributed system for diagnostics is also discussed. To develop this system for medical image analysis we review several processing methods and machine learning algorithms. Some examples of medical system processing results are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Spooner, S.A., Gotlieb, E.M.: Telemedicine: pediatric applications. Pediatrics 113(6), e639–e643 (2004)

    Article  Google Scholar 

  2. González-Espada, W.J., Hall-Barrow, J., Hall, R.W., Burke, B.L., Smith, C.E.: A Achieving success connecting academic and practicing clinicians through telemedicine. Pediatrics 123(3), 476–483 (2009)

    Article  Google Scholar 

  3. Doolittle, G.C., Spaulding, A.O., Williams, A.R.: The decreasing cost of telemedicine and telehealth. Telemed. Health 17(9), 671–675 (2011)

    Article  Google Scholar 

  4. Izquierdo, R., et al.: School-centered telemedicine for children with type 1 diabetes mellitus. Pediatr. 155(3), 374–379 (2009)

    Article  Google Scholar 

  5. McConnochie, K.M., Wood, N.E., Kitzman, H.J., Herendeen, N.E., Roy, J., Roghmann, K.J.: Telemedicine reduces absence resulting from illness in urban child care: evaluation of an innovation. Pediatrics 115(5), 1273–1282 (2005)

    Article  Google Scholar 

  6. Sato, M., et al.: Application of deep learning to the classification of images from colposcopy. Oncol. Lett. 15(3), 3518–3523 (2018)

    Google Scholar 

  7. Fernandes, K., Cardoso, J.S., Fernandes, J.: Automated methods for the decision support of cervical cancer screening using digital colposcopies. IEEE Access 6, 33910–33927 (2018)

    Article  Google Scholar 

  8. Gupta, A., Jha, R.K.: A survey of 5G network: architecture and emerging technologies. IEEE Access 3, 1206–1232 (2015)

    Article  Google Scholar 

  9. Ometov, A., Moltchanov, D., Komarov, M., Volvenko, S.V., Koucheryavy, Y.: Packet level performance assessment of mmWave backhauling technology for 3GPP NR systems. IEEE Access 7, 9860–9871 (2019)

    Article  Google Scholar 

  10. Gapeyenko, M., et al.: On the degree of multi-connectivity in 5G millimeter-wave cellular urban deployments. IEEE Trans. Veh. Technol. 68(2), 1973–1978 (2019)

    Article  Google Scholar 

  11. Sadovaya, Y., Gelgor, A.: Synthesis of signals with a low-level of out-of-band emission and peak-to-average power ratio. In: 2018 IEEE International Conference on Electrical Engineering and Photonics (EExPolytech), St. Petersburg, pp. 103–106 (2018)

    Google Scholar 

  12. Gorbunov, S., Rashich A.: BER performance of SEFDM signals in LTE fading channels. In: 2018 41st International Conference on Telecommunications and Signal Processing (TSP), pp. 1–4 (2018)

    Google Scholar 

  13. Andreev, S., et al.: Exploring synergy between communications, caching, and computing in 5G-grade deployments. IEEE Commun. Mag. 54(8), 60–69 (2016)

    Article  MathSciNet  Google Scholar 

  14. Varga, J., Hilt, A., Rotter, C., Járó, G.: Providing ultra-reliable low latency services for 5G with unattended datacenters. In: 2018 11th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP), Budapest, pp. 1–4 (2018)

    Google Scholar 

  15. Schmoll, R., Pandi, S., Braun, P.J., Fitzek, F.H.P.: Demonstration of VR/AR offloading to Mobile Edge Cloud for low latency 5G gaming application. In: 2018 15th IEEE Annual Consumer Communications & Networking Conference (CCNC), Las Vegas, NV, pp. 1–3 (2018)

    Google Scholar 

  16. Ovsyannikova, A.S., Zavjalov, S.V., Volvenko, S.V.: On the joint use of turbo codes and optimal signals with increased symbol rate. In: 2018 10th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), Moscow, Russia, 1–4 (2018)

    Google Scholar 

  17. Gelgor, A., Gorlov, A.: A performance of coded modulation based on optimal Faster-than-Nyquist signals. In: 2017 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom), Istanbul, pp. 1–5 (2017)

    Google Scholar 

  18. Rashich, A., Urvantsev, A.: Pulse-shaped multicarrier signals with nonorthogonal frequency spacing. In: 2018 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom), Batumi, pp. 1–5 (2018)

    Google Scholar 

  19. Ghannam, H., Nopchinda, D., Gavell, M., Zirath, H., Darwazeh, I.: Experimental demonstration of spectrally efficient frequency division multiplexing transmissions at E-Band. IEEE Trans. Microw. Theory Tech. 67(5), 1911–1923 (2019)

    Article  Google Scholar 

  20. Topol, E.J.: High-performance medicine: the convergence of human and artificial intelligence. Nat. Med. 25(1), 44 (2019)

    Article  Google Scholar 

  21. Jha, S., Topol, E.J.: Adapting to artificial intelligence: radiologists and pathologists as information specialists. JAMA 316(22), 2353–2354 (2016)

    Article  Google Scholar 

  22. Esteva, A., et al.: A guide to deep learning in healthcare. Nat. Med. 25, 24–29 (2019)

    Article  Google Scholar 

  23. Kermany, D.S., et al.: Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell 172, 1122–1131 (2018)

    Article  Google Scholar 

  24. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 580–587 (2014)

    Google Scholar 

  25. Girshick, R.: Fast R-CNN. In: Proceedings of the International Conference on Computer Vision (ICCV) (2015)

    Google Scholar 

  26. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Neural Information Processing Systems (NIPS) (2015)

    Google Scholar 

  27. Redmon, J., Divvala, S., Girshick, R., et al.: You only look once: unified, real – time object detection. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  28. Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

    Google Scholar 

  29. Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement, arXiv preprint arXiv:1804.02767 (2018)

  30. Lin, T.Y., Goyal, P., Girshick, R., et al.: Focal loss for dense object detection, arXiv preprint arXiv:1708.02002 (2017)

  31. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S.E.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016, pp. 21–37. Springer, Cham (2016)

    Google Scholar 

  32. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, pp. 3431–3440 (2015)

    Google Scholar 

  33. Noh, H., Hong, S., Han, B.: Learning deconvolution network for semantic segmentation. In: 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, pp. 1520–1528 (2015)

    Google Scholar 

  34. Badrinarayanan, V., Kendall, A., Cipolla, R.: SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481–2495 (2017)

    Article  Google Scholar 

  35. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, William M., Frangi, Alejandro F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  36. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, pp. 6230–6239 (2017)

    Google Scholar 

  37. Chen, L., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2018)

    Article  Google Scholar 

  38. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: 2017 IEEE International Conference on Computer Vision (ICCV), Venice, pp. 2980–2988 (2017)

    Google Scholar 

  39. Zhang, H., et al.: Context encoding for semantic segmentation. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, pp. 7151–7160 (2018)

    Google Scholar 

  40. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  41. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, 25, pp. 1097–1105. Curran Associates Inc. (2012)

    Google Scholar 

  42. Szegedy, C., et al.: Going deeper with convolutions. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, pp. 1–9 (2015)

    Google Scholar 

  43. Musakulova, Z., Mirkin, E., Savchenko, E.: Synthesis of the backpropagation error algorithm for a multilayer neural network with nonlinear synaptic inputs. In: 2018 IEEE International Conference on Electrical Engineering and Photonics (EExPolytech), pp. 131–135 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Velichko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Velichko, E. et al. (2019). A Concept of Smart Medical Autonomous Distributed System for Diagnostics Based on Machine Learning Technology. In: Galinina, O., Andreev, S., Balandin, S., Koucheryavy, Y. (eds) Internet of Things, Smart Spaces, and Next Generation Networks and Systems. NEW2AN ruSMART 2019 2019. Lecture Notes in Computer Science(), vol 11660. Springer, Cham. https://doi.org/10.1007/978-3-030-30859-9_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30859-9_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30858-2

  • Online ISBN: 978-3-030-30859-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics