Skip to main content

New Method for Determining the Probability of Signals Overlapping for the Estimation of the Stability of the Radio Monitoring Systems in a Complex Signal Environment

  • Conference paper
  • First Online:
Internet of Things, Smart Spaces, and Next Generation Networks and Systems (NEW2AN 2019, ruSMART 2019)

Abstract

The article considers the consequences of the negative influence of signals overlapping from radio emission sources in time. Several examples show that overlapping in time worsens the quality of primary signal processing and, therefore, decreases the stability of radio monitoring systems. A new method of determining the probability of signals overlapping from radio emission sources has been developed. Calculations of the probability of failure of primary processing systems of radio monitoring systems are made.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mashkov, G., Borisov, E., Fokin, G.: A positioning accuracy experimental evaluation in SDR-based MLAT with joint processing on range measurement. In: Proceedings - International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications, ICRAMET 2016, Jakarta, pp. 7–12 (2016). 7849572

    Google Scholar 

  2. Fokin, G., Kireev, A., Al-Odliari, A.H.A.: TDOA positioning accuracy performance evaluation for arc sensor configuration. In: Proceedings - 2018 Systems of Signals Generating and Processing in the Field of on Board Communications, Moscow, vol. 2018, pp. 1–5 (2018)

    Google Scholar 

  3. Koucheryavy, A., Vladyko, A., Kirichek, R.: State of the art and research challenges for public flying ubiquitous sensor networks. In: Balandin, S., Andreev, S., Koucheryavy, Y. (eds.) ruSMART 2015. LNCS, vol. 9247, pp. 299–308. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23126-6_27

    Chapter  Google Scholar 

  4. Hoang, T., Kirichek, R., Paramonov, A., Koucheryavy, A.: Influence of intentional electromagnetic interference on the functioning of the terrestrial segment of flying ubiquitous sensor network. Information Science and Applications (ICISA) 2016. LNEE, vol. 376, pp. 1249–1259. Springer, Singapore (2016). https://doi.org/10.1007/978-981-10-0557-2_118

    Chapter  Google Scholar 

  5. Borodulin, R.U., Sosunov, B.V., Makarov, S.B.: The principles of antennas constructive synthesis in dissipative media. In: Galinina, O., Andreev, S., Balandin, S., Koucheryavy, Y. (eds.) NEW2AN/ruSMART/NsCC 2017. LNCS, vol. 10531, pp. 455–465. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67380-6_41

    Chapter  Google Scholar 

  6. Petrov, A.A., Davydov, V.V.: Improvement frequency stability of caesium atomic clock for satellite communication system. In: Balandin, S., Andreev, S., Koucheryavy, Y. (eds.) ruSMART 2015. LNCS, vol. 9247, pp. 739–744. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23126-6_68

    Chapter  Google Scholar 

  7. Tarasenko, M.Yu., Davydov, V.V., Lenets, V.A., Akulich, N.V., Yalunina, T.R.: Features of use direct and external modulation in fiber optical simulators of a false target for testing radar station. In: Galinina, O., Andreev, S., Balandin, S., Koucheryavy, Y. (eds.) NEW2AN/ruSMART/NsCC 2017. LNCS, vol. 10531, pp. 227–232. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67380-6_21

    Google Scholar 

  8. Fokin, G., Ali, A.-o.A.H: Algorithm for positioning in non-line-of-sight conditions using unmanned aerial vehicles. In: Galinina, O., Andreev, S., Balandin, S., Koucheryavy, Y. (eds.) NEW2AN/ruSMART 2018. LNCS, vol. 11118, pp. 496–508. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01168-0_44

    Chapter  Google Scholar 

  9. Koucheryavy, A., Bogdanov, I., Paramonov, A.: The mobile sensor network life-time under different spurious flows intrusion. In: Balandin, S., Andreev, S., Koucheryavy, Y. (eds.) NEW2AN/ruSMART 2013. LNCS, vol. 8121, pp. 312–317. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40316-3_27

    Chapter  Google Scholar 

  10. Petrov, A.A., Davydov, V.V., Myazin, N.S., Kaganovskiy, V.E.: Rubidium atomic clock with improved metrological characteristics for satellite communication system. In: Galinina, O., Andreev, S., Balandin, S., Koucheryavy, Y. (eds.) NEW2AN/ruSMART/NsCC 2017. LNCS, vol. 10531, pp. 561–568. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67380-6_52

    Chapter  Google Scholar 

  11. Koucheryavy, A.: Networks interoperability. In: Proceedings – International Conference on Advanced Communication Technology, ICACT (Phoenix Park; South Korea), vol. 1, pp. 691–693 (2009). N 4810044

    Google Scholar 

  12. Podstrigaev, A.S., Smolyakov, A.V., Davydov, V.V., Myazin, N.S., Slobodyan, M.G.: Features of the development of transceivers for information and communication systems considering the distribution of radar operating frequencies in the frequency range. In: Galinina, O., Andreev, S., Balandin, S., Koucheryavy, Y. (eds.) NEW2AN/ruSMART 2018. LNCS, vol. 11118, pp. 509–515. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01168-0_45

    Chapter  Google Scholar 

  13. Podstrigaev, A.S.: All-purpose adjuster for microwave microstrip devices. In: Proceedings - CriMiCo 2014 - 2014 24th International Crimean Conference Microwave and Telecommunication Technology (Sevastopol), pp. 896–897 (2014). 6959682

    Google Scholar 

  14. Sivers, M., Fokin, G., Dmitriev, P., Kireev, A., Volgushev, D., Hussein Ali, A.-o.A.: Indoor positioning in WiFi and NanoLOC networks. In: Galinina, O., Balandin, S., Koucheryavy, Y. (eds.) NEW2AN/ruSMART 2016. LNCS, vol. 9870, pp. 465–476. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46301-8_39

    Chapter  Google Scholar 

  15. Pirmagomedov, R., Blinnikov, M., Kirichek, R., Koucheryavy, A.: Wireless nanosensor network with flying gateway. In: Chowdhury, K.R., Di Felice, M., Matta, I., Sheng, B. (eds.) WWIC 2018. LNCS, vol. 10866, pp. 258–268. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-02931-9_21

    Chapter  Google Scholar 

  16. Semenov, V.V., Nikiforov, N.F., Ermak, S.V., Davydov, V.V.: Calculation of stationary magnetic resonance signal in optically oriented atoms induced by a sequence of radio pulses. Sov. J. Commun. Technol. Electron. 36(4), 59–63 (1991)

    Google Scholar 

  17. Ryazantsev, L.B., Likhachev, V.P.: Assessment of range and radial velocity of objects of a broadband radar station under conditions of range cell migration. Meas. Tech. 60(11), 1158–1162 (2018)

    Article  Google Scholar 

  18. Kovalchukov, R., Moltchanov, D., Samuylov, A., Ometov, A., Andreev, S., Koucheryavy, Y.: Analyzing effects of directionality and random heights in drone-based mmWave communication. IEEE Trans. Veh. Technol. 67(10), 10064–10069 (2018). 8412525

    Article  Google Scholar 

  19. Podstrigaev, A.S., Davydov, R.V., Rud, V.Yu., Davydov, V.V.: Features of transmission of intermediate frequency signals over fiber-optical communication system in radar station. In: Galinina, O., Andreev, S., Balandin, S., Koucheryavy, Y. (eds.) NEW2AN/ruSMART 2018. LNCS, vol. 11118, pp. 624–630. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01168-0_56

    Google Scholar 

  20. Davydov, R.V., et al.: Fiber-optic transmission system for the testing of active phased antenna arrays in an anechoic chamber. In: Galinina, O., Andreev, S., Balandin, S., Koucheryavy, Y. (eds.) NEW2AN/ruSMART/NsCC 2017. LNCS, vol. 10531, pp. 177–183. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67380-6_16

    Chapter  Google Scholar 

  21. Podstrigaev, A.S., Ryazantsev, L.B., Likhachev, V.P.: Technique for tuning microwave strip devices. Meas. Tech. 59(5), 547–550 (2016)

    Article  Google Scholar 

  22. Sivers, M., Fokin, G.: LTE positioning accuracy performance evaluation. In: Balandin, S., Andreev, S., Koucheryavy, Y. (eds.) ruSMART 2015. LNCS, vol. 9247, pp. 393–406. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23126-6_35

    Chapter  Google Scholar 

  23. Self, A.G., Smith, B.G.: Intercept time and its prediction. In: IEE Proceedings. Part F: Communications Radar and Signal Processing. vol. 132, No. 4, pp. 215–222 (1985)

    Article  Google Scholar 

  24. Perkins, J.: Probability and Distribution in Time of Pulse Overlap in Periodic Settings, pp. 1–19 (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman V. Davydov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Podstrigaev, A.S., Smolyakov, A.V., Davydov, V.V., Myazin, N.S., Grebenikova, N.M., Davydov, R.V. (2019). New Method for Determining the Probability of Signals Overlapping for the Estimation of the Stability of the Radio Monitoring Systems in a Complex Signal Environment. In: Galinina, O., Andreev, S., Balandin, S., Koucheryavy, Y. (eds) Internet of Things, Smart Spaces, and Next Generation Networks and Systems. NEW2AN ruSMART 2019 2019. Lecture Notes in Computer Science(), vol 11660. Springer, Cham. https://doi.org/10.1007/978-3-030-30859-9_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30859-9_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30858-2

  • Online ISBN: 978-3-030-30859-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics