Skip to main content

Fiber – Optical System for Governance and Control of Work for Nuclear Power Stations of Low Power

  • Conference paper
  • First Online:
Internet of Things, Smart Spaces, and Next Generation Networks and Systems (NEW2AN 2019, ruSMART 2019)

Abstract

Features of control systems and various systems for monitoring the parameters of nuclear power plants using fiber - optical communication systems are considered. A system of control and monitoring of the values of various physical parameters for a low-power nuclear power plant with a Brest-OD-300 reactor has been developed. Various fiber-optic sensors are presented that are integrated without additional devices into a single monitoring and control system. The measurement results are presented. The necessity of continuing development and research in this direction has been substantiated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Klinov, D.A., Gulevich, A.V., Kagramanyan, V.S., Dekusar, V.M., Usanov, V.D.: Development of sodium-cooled fast reactors under modern conditions: challenges and stimuli. At. Energy 125(3), 143–148 (2019)

    Article  Google Scholar 

  2. Ignatiev, V.V., et al.: Molten-salt reactor for nuclear fuel cycle closure on all actinides. At. Energy 125(5), 279–283 (2019)

    Article  Google Scholar 

  3. Krapivtsev, V.G., Solonin, V.I.: Model studies of interloop coolant mixing in VVER-1000 in-reactor pressure channel. At. Energy 125(5), 307–317 (2019)

    Article  Google Scholar 

  4. Davydov, V.V., Dudkin, V.I., Karseev, A.U.: Nuclear magnetic flowmeter – spectrometer with fiber – optical communication line in cooling systems of atomic energy plants. Opt. Mem. Neural Netw. (Inf. Opt.) 22(2), 112–117 (2013)

    Article  Google Scholar 

  5. Davydov, V.V., Velichko, E.N., Dudkin, V.I., Karseev, A.Yu.: A nutation nuclear-magnetic teslameter for measuring weak magnetic field. Meas. Tech. 57(6), 684–689 (2014)

    Article  Google Scholar 

  6. Davydov, V.V., Dudkin, V.I., Karseev, A.Yu.: Fiber – optic communication line for the nmr signals transmission in the control systems of the ships atomic power plants work. Opt. Mem. Neural Netw. (Inf. Opt.) 23(4), 259–264 (2014)

    Article  Google Scholar 

  7. Makolkina, M., Pham, V.D., Kirichek, R., Gogol, A., Koucheryavy, A.: Interaction of AR and IoT applications on the basis of hierarchical cloud services. In: Galinina, O., Andreev, S., Balandin, S., Koucheryavy, Y. (eds.) NEW2AN/ruSMART -2018. LNCS, vol. 11118, pp. 547–559. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01168-0_49

    Chapter  Google Scholar 

  8. Ateya, A.A., Muthanna, A., Vybornova, A., Darya, P., Koucheryavy, A.: Energy - aware offloading algorithm for multi-level cloud based 5 g system. In: Galinina, O., Andreev, S., Balandin, S., Koucheryavy, Y. (eds.) NEW2AN/ruSMART -2018. LNCS, vol. 11118, pp. 355–370. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01168-0_33

    Chapter  Google Scholar 

  9. Koucheryavy, A., Vladyko, A., Kirichek, R.: State of the art and research challenges for public flying ubiquitous sensor networks. In: Balandin, S., Andreev, S., Koucheryavy, Y. (eds.) ruSMART 2015. LNCS, vol. 9247, pp. 299–308. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23126-6_27

    Chapter  Google Scholar 

  10. Podstrigaev, A.S., Davydov, R.V., Rud, V.Yu., Davydov, V.V.: Features of transmission of intermediate frequency signals over fiber-optical communication system in radar station. In: Galinina, O., Andreev, S., Balandin, S., Koucheryavy, Y. (eds.) NEW2AN/ruSMART 2018. LNCS, vol. 11118, pp. 624–630. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01168-0_56

    Chapter  Google Scholar 

  11. Ateya, A.A., Muthanna, A., Gudkova, I., Abuarqoub, A., Vybornova, A., Koucheryavy, A.: Development of intelligent core network for tactile internet and future smart systems. J. Sens. Actuator Netw. 7(1), 7 (2018)

    Article  Google Scholar 

  12. Kiesewetter, D., Malyugin, V., Makarov, S., Korotkov, K., Ming, D., Wei, X.: Application of the optical fibers in the system of determining the distance of jump at ski springboard. In: Proceedings – 2016 Advances in Wireless and Optical Communications, RTUWO 2016, pp. 5–8 (2017). 7821845

    Google Scholar 

  13. Prokofiev, A., Nepomnyashchaya, E., Pleshakov, I., Kuzmin, Y., Velichko, E., Aksenov, E.: Study of specific features of laser radiation scattering by aggregates of nanoparticles in ferrofluids used for optoelectronic communication systems. In: Galinina, O., Balandin, S., Koucheryavy, Y. (eds.) NEW2AN/ruSMART -2016. LNCS, vol. 9870, pp. 680–689. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46301-8_59

    Chapter  Google Scholar 

  14. Bystrov, V.V., Likhachev, V.P., Ryazantsev, L.B.: Experimental check of the coherence of radiolocation signals from objects with nonlinear electrical properties. Meas. Tech. 57(9), 1073–1076 (2014)

    Article  Google Scholar 

  15. Davydov, V.V., Dudkin, V.I., Karseev, AYu.: Fiber – optic imitator of accident situation for verification of work of control systems of atomic energy plants on ships. Opt. Mem. Neural Netw. (Inf. Opt.) 23(3), 170–176 (2014)

    Article  Google Scholar 

  16. Davydov, V.V., Dudkin, V.I., Velichko, E.N., Karseev, AYu.: Fiber-optic system for simulating accidents in the cooling circuits of a nuclear power plant. J. Opt. Technol. (A Translation of Opticheskii Zhurnal) 82(3), 132–135 (2015)

    Google Scholar 

  17. Davydov, V.V., Ermak, S.V., Karseev, A.U., Nepomnyashchaya, E.K., Petrov, A.A., Velichko, E.N.: Fiber-optic super-high-frequency signal transmission system for sea-based radar station. In: Balandin, S., Andreev, S., Koucheryavy, Y. (eds.) NEW2AN 2014. LNCS, vol. 8638, pp. 694–702. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10353-2_65

    Chapter  Google Scholar 

  18. Ivanov, S.I., Lavrov, A.P., Saenko, I.I.: Application of microwave photonics components for ultrawideband antenna array beamforming. In: Galinina, O., Balandin, S., Koucheryavy, Y. (eds.) NEW2AN/ruSMART -2016. LNCS, vol. 9870, pp. 670–679. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46301-8_58

    Chapter  Google Scholar 

  19. Davydov, V.V., Sharova, N.V., Fedorova, E.V., Gilshteyn, E.P., Malanin, K.Yu., Fedotov, I.V., Vologdin, V.A., Karseev, A.Yu.: Fiber-optics system for the radar station work control. In: Balandin, S., Andreev, S., Koucheryavy, Y. (eds.) ruSMART 2015. LNCS, vol. 9247, pp. 712–721. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23126-6_65

    Chapter  Google Scholar 

  20. Ermolaev, A.N., Krishpents, G.P., Davydov, V.V., Vysoczkiy, M.G.: Compensation of chromatic and polarization mode dispersion in fiber-optic communication lines in microwave signals transmittion. J. Phys: Conf. Ser. 741(1), 012071 (2016)

    Google Scholar 

  21. Belkin, M.E., Sigov, A.S.: Some trend in super-high frequency optoelectronics. J. Commun. Technol. Electron. 54(8), 655–658 (2009)

    Article  Google Scholar 

  22. Friman, R.K.: Fiber-Optic Communication Systems, p. 496. Wiley-Inter Science (2012)

    Google Scholar 

  23. Agrawal, G.P.: Light Wave Technology: Telecommunication Systems, p. 480. NJ, Wiley-Inter Science (2014)

    Google Scholar 

  24. Davydov, V.V.: Control of the longitudinal relaxation time T1 of a flowing liquid in NMR flowmeters. Russ. Phys. J. 42(9), 822–825 (1999)

    Article  Google Scholar 

  25. Davydov, V.V., Dudkin, V.I., Karseev, AYu.: A compact nuclear magnetic relaxometer for the express monitoring of the state of liquid and viscous media. Meas. Tech. 57(8), 912–918 (2014)

    Article  Google Scholar 

  26. Davydov, V.V., Dudkin, V.I., Karseev, AYu.: Governance of the nutation line contour in nuclear-magnetic flowmeters. Russ. Phys. J. 58(2), 146–152 (2015)

    Article  Google Scholar 

  27. Davydov, V.V., Dudkin, V.I., Karseev, AYu., Vologdin, V.A.: Special features in application of nuclear magnetic spectroscopy to study flows of liquid media. J. Appl. Spectrosc. 82(6), 1013–1019 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman V. Davydov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Myazin, N.S. et al. (2019). Fiber – Optical System for Governance and Control of Work for Nuclear Power Stations of Low Power. In: Galinina, O., Andreev, S., Balandin, S., Koucheryavy, Y. (eds) Internet of Things, Smart Spaces, and Next Generation Networks and Systems. NEW2AN ruSMART 2019 2019. Lecture Notes in Computer Science(), vol 11660. Springer, Cham. https://doi.org/10.1007/978-3-030-30859-9_66

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30859-9_66

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30858-2

  • Online ISBN: 978-3-030-30859-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics