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Abstract. This paper proposes IELE, an LLVM-style language, to-
gether with a tool ecosystem for implementing and formally reasoning
about smart contracts on the blockchain. IELE was designed by speci-
fying its semantics formally in the K framework. Its implementation, a
IELE virtual machine (VM), as well as a formal verification tool for IELE
smart contracts, were automatically generated from the formal specifi-
cation. The automatically generated formal verification tool allows us
to formally verify smart contracts without any gap between the verifier
and the actual VM. A compiler from Solidity, the predominant high-
level language for smart contracts, to IELE has also been (manually)
implemented, so Ethereum contracts can now also be executed on IELE.

1 Introduction

Ethereum [5], with more that 500,000 daily transactions [15] is the largest
blockchain network supporting smart contracts. The smart contracts used in the
context of Ethereum transactions are written in the language of the Ethereum
Virtual Machine (EVM) [44], a stack-based assembly-level language.

Unfortunately, recent exploits on EVM smart contracts have led to losses in
the range of hundreds of millions USD [1,8,41,4,40]. In response, KEVM [19] was
developed, a formal semantics of the EVM in K [34], to provide formal verifica-
tion assistance to the EVM smart contract world [31,37]. We and others in the
Ethereum community have embraced and adopted KEVM, as a more rigorous
and thus precise alternative to the Yellow paper [44]. Through our own experi-
ence with KEVM and the reports of others, we became aware of the limitations
of EVM as a language: it includes features that are easily exploitable and its
low-level nature makes formal verification efforts tedious and time-consuming.
On the positive side, as reported in [19], the EVM interpreter automatically gen-
erated from KEVM by the K framework [34] was only one order of magnitude
slower than the official EVM client written in C++ [11]. Since the node client
code takes only a small fraction of the total execution time on a blockchain,
the KEVM performance was considered acceptable by IOHK (http://iohk.io),
the company that is in charge of the Ethereum Classic blockchain, to deploy a
testnet that is entirely powered by the auto-generated KEVM client [21].

http://iohk.io
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In response to these limitations of EVM, we have designed and implemented
IELE, a new language for smart contracts. IELE is a low-level language with
syntax similar to that of LLVM [26]. It is designed to be both human readable
and suitable as a compilation target for more high-level languages. IELE has var-
ious high-level features, such as function calls/returns, static jumps, arbitrary-
precision integer arithmetic among others, that both make automatic formal
verification more straight-forward and the language itself more secure.

IELE was designed using a formal specification, and its implementation was
automatically generated from its specification using the same technology that was
used to generate the implementation of KEVM [19], namely K [34]. In contrast,
other languages have separate specifications and implementations, and it is hard
to keep them from differing. Sometimes the specification is informal, like that
of LLVM [26] and sometimes formal, like that of SML [27], but in either case
the implementation is separate so it is not possible to execute test cases against
the specification. To bridge the gap between specification and tools, K provides
support for developing language semantic definitions as well as a host of tools
for such a definition, such as parser, interpreter, deductive verifier, and more.
These tools are automatically generated so any change to the formal seman-
tics is automatically propagated to the tools. For IELE, we use the generated
parser/interpreter to obtain a IELE Virtual Machine (IELE VM) tool (also ref-
erence implementation). We also use the capability of K to generate sound and
relatively complete deductive program verifiers for the defined languages [7], to
obtain a IELE smart contract formal verification tool. As a result, IELE is for-
mally specified and its implementation and verifier are correct by construction
and remain correct, with zero effort, in the presence of updates to the language.

We have deployed the IELE VM in a testnet supported by IOHK, a major
blockchain company [20]. To do so, we have built appropriate infrastructure
around the IELE VM: a full compiler for Solidity [12], a popular high-level
language for smart contracts that until now could only be compiled to EVM, as
well as integration with the Mantis Ethereum client [22]. This allows us to run
real-world Solidity contracts on IELE. Appendix B discusses this effort in detail.

In summary, our contributions are:
– IELE, a smart contract language designed from the ground up using for-

mal methods with the goals of security, verification, human-readability, and
portability in mind, using the K framework. IELE is publicly available [38].

– Useful tools for IELE: A IELE virtual machine that was deployed as a testnet
by a major blockchain company and a IELE smart contract verifier auto-
matically generated by the K framework from the IELE formal semantics.

More details can be found on Github [38] and on the IELE testnet [20].

2 Background

We briefly discuss the K framework, Ethereum and the EVM, as well as other
smart contract languages currently under development.

The K Language Semantic Framework K [34] is a rewriting-/reachability-
based framework for defining executable semantic specifications of programming
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languages. Given the syntax and semantics of a language, K automatically gener-
ates a parser, an interpreter, as well as formal analysis tools such as a deductive
verifier. This avoids duplication while improving efficiency and consistency. For
example, using the interpreter, one can test the semantics immediately, which
significantly increases the efficiency of and confidence in semantics development.
There exists a rich literature on using K for formalizing existing languages, such
as C [10,18], Java [3] and JavaScript [30], among others. K has also been used to
formally specify the Ethereum Virtual Machine (EVM) [19], the current smart
contract language for Ethereum. In fact, the process of formalizing EVM as an
executable semantics uncovered various inconsistencies and unspecified behav-
iors in its original English specification (the Yellow paper) [44].

Blockchain and Ethereum A blockchain is an append-only ledger that is
commonly used for synchronization in distributed protocols. Cryptocurrencies
such as Bitcoin [29], refer to such protocols that allow a set of clients to trans-
fer and maintain a balance of virtual coins. A cryptocurrency network consists
of accounts (essentially encrypted client IDs) with cryptocurrency balances, a
blockchain of verified transactions, and a set of so-called miners, computation
resources that process pending transactions and append them in the blockchain.

Ethereum [5] is a blockchain-based network that provides a decentralized,
replicated computer for distributed applications and uses a blockchain to store
its global state. Ethereum supports a programming language for writing smart
contracts, which are programs associated with Ethereum accounts. Ethereum
accounts interact with each other using transactions over a cryptocurrency called
Ether. When an Ethereum account associated with a smart contract receives a
transaction, execution of its smart contract code is triggered. Such transactions
can both transfer Ether and pass input data to the smart contract.

Ethereum smart contracts often manage large monetary amounts, in the
range of 100M USD. Ethereum’s popularity is largely due to the fact that there
is no need for a trusted third party (such as a bank) to verify the transactions;
the trust comes from the consensus algorithm and the fact that smart contract
code is binding. Ethereum transactions are irreversible and the source code of
the involved smart contracts is public and immutable. Moreover, any transaction
can be replicated through the information stored in the blockchain.

EVM Currently, Ethereum contracts should be translated to the language
of the Ethereum Virtual Machine (EVM) [44]. The EVM is a stack-based VM
with an assembly-level language with no code/data separation or function-level
calls/returns. The language is loosely specified in the Yellow Paper [44], but has
been recently formally specified as a K definition in KEVM [19]. KEVM provides
a reference implementation that is considered for adoption by the Ethereum
Foundation, a deductive verifier that has been used to verify real-world con-
tracts [31,37], and the Jello Paper [25], an English language specification of
EVM generated from the documentation of the KEVM semantics definition.

Other Smart Contract Languages Several smart contract programming
languages have been proposed either as alternatives to EVM or as higher-level,
more programmer-friendly options. Solidity [12] and Vyper [14] are popular
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high-level languages for Ethereum contracts that are typically compiled down to
EVM. Plutus [23] is a high-level functional language that offers increased security
due to features such as type safety. Rholang [33] is a functional, concurrency-
oriented language that powers RChain, an evolution of traditional blockchain
networks that allows for concurrent transactions. We believe that IELE could
serve as a compilation target of all these languages. In fact, we have imple-
mented a Solidity-to-IELE compiler as part of our evaluation (see appendix B.1).
Intermediate-level smart contract languages include Michelson [42], a stack-
based, but also statically typed language, Scilla [45], a language that offers clear
separation between in-contract computation and inter-contract communication
to facilitate formal reasoning about smart contracts, and Simplicity [2], a lan-
guage designed to have simple semantics which lend themselves to static analysis
and formal reasoning. IELE shares the goals of enhanced security and ease of for-
mal verification with these languages. We believe that the novelty in the design
of IELE, compared to those efforts, stems from the fact that its formal specifica-
tion and its de-facto implementation are one and the same artifact: any change
to IELE’s specification is automatically propagated to the implementation of the
language execution engine and verification tools.

3 The IELE language

Based on experience with KEVM and formal verification of EVM smart con-
tracts, we identified five desired properties for an ideal blockchain low-level lan-
guage and designed IELE around them. Our design was done using formal se-
mantics, and the implementation was generated automatically [38,20].

Security Smart contracts often manage large monetary amounts and have
been targets of attackers that seek to exploit any vulnerabilities in their code [1].
Very often, language design weaknesses such as undefined behaviors, execution
of arbitrary data as code, and silent integer overflow act as enablers for attackers
to exploit corresponding bugs. IELE avoids all of the above (and more) design
weaknesses and hence eliminates many possible attack vectors by design.

Formal verification No matter how many insecure features are avoided at
the language definition level, software bugs can always allow for exploits. The
three most expensive exploits of Ethereum smart contracts are all due to soft-
ware errors [8,4,41]. A strong defense against such exploits is formal correctness
verification and IELE is designed with the goal of formal verification in mind.

Human readable Smart contracts act as binding agreements between hu-
man end-users. Being human readable reinforces this intention, as it is easier for
the agreeing parties to trust a formal agreement they can read and understand.
Ideally smart contracts should be human readable at the exact level they are
stored in the blockchain and executed. This is true for IELE contracts, since
the IELE syntax was designed to be almost identical to that of LLVM [26], a
state-of-the-art intermediate language designed to be human readable.

Determinism Ethereum’s blockchain stores transactions that can be repli-
cated by any Ethereum client and many of these transactions require execution
of smart contract code to be replayed. For this reason it is important that the
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underlying smart contract language and its implementation are deterministic.
The IELE specification contains no undefined and/or implementation-defined
behaviors, as well as no by-design non-deterministic features.

Gas model The philosophy behind IELE’s gas model is simple: no limita-
tions in code execution, but costs are analogous to the resource consumption. For
example, IELE programs have access to an unlimited number of registers, but
more used registers incur steeper gas charges. Similarly IELE uses unbounded
integer arithmetic, but the larger the numbers at runtime, the more gas required.
A more detailed discussion of IELE’s gas model can be found in appendix A.

Listing 1 shows a simple forwarder contract in IELE. The contract forwards
any amount of Ether4 sent to it to the account that created the contract. The
@init function of the contract is executed when a transaction creates this con-
tract. The built-in @iele.caller returns the account address of the account
that posted the transaction, which is the creator of this contract. This address is
saved in the account storage of the forwarder. The @deposit function is a pub-
lic function meaning it can be invoked by incoming transactions. The built-in
@iele.callvalue returns the amount of Ether that was sent to the forwarder
with the incoming transaction. This amount is forwarded to the creator account
by invoking its own @deposit function with the IELE instruction call .. at.
Note that the forwarder specifies an upper limit of gas to spend at the creator
during the account call. If the forwarding fails (e.g., due to lack of gas), the
built-in @iele.invalid is called that reverts any global state change made so
far, including the Ether receipt for the forwarder account.

The full formal semantics of the IELE language, given as an executable K
definition that also serves as a reference implementation, can be found in [38].
In the remainder of this section we give a high-level presentation of IELE and
discuss the improvements over the state-of-the-art EVM.

3.1 IELE Contracts

A IELE contract is the main compilation unit of code that can be associated with
a blockchain account. A IELE contract has a name and contains one or more
functions, global variables, and external contract declarations. Public functions
can be invoked from other accounts while private functions only from within the
contract. Global variables are accessible from anywhere within the contract and
hold a constant value. The Listing 1 contract has one global variable, @creator,
one private function, @init, and one public function, @deposit.

Account Storage An account includes a storage that is an unbounded sparse
array of arbitrary-precision signed integers. The storage is persistent, i.e., it holds
its contents throughout the account’s lifetime. As such the storage contents
of all accounts are part of the global state and any modification on them is
recorded in the blockchain. IELE code associated with an account can access
the account storage through the dedicated sload and sstore instructions. IELE
global variables are typically used to hold specific storage addresses, so that the

4 IELE can be used in any Ethereum-style blockchain, where the cryptocurrency may
be called differently. We use Ether throughout the paper for the sake of concreteness.



6 T. Kasampalis et al.

contract code can refer to those addresses by the name of the variable. See, e.g.,
how the global variable @creator is used in the contract of Listing 1.

Listing 1. Forwarder contract in IELE� �
// Contract forwards any funds it receives to its creator account

contract Forwarder {

// account storage index holding the creator account address

@creator = 1

// initializes a forwarder

define @init() {

// get the address of the creator account

%creator = call @iele.caller()

// store the creator ’s address in the storage

sstore %creator , @creator

}

// forwards the received funds to the creator of this account

define public @deposit() {

// get the received funds

%value = call @iele.callvalue()

// get the creator account address from the storage

%creator = sload @creator

// forward funds by calling deposit at the creator account

%status = call @deposit at %creator () send %value ,

gaslimit 2300

br %status , throw // contract call failed

ret void

throw:

call @iele.invalid()

}

}� �
Contract Creation An account can be created and associated with a IELE

contract manually by an end user, by posting of an appropriate transaction,
or dynamically by another executing IELE contract, using IELE’s create in-
struction. We say that a new contract created this way is deployed, since an
executable object (including smart contract code and state) is literally stored
in the blockchain. Listing 2 shows a contract that dynamically creates accounts
associated with the Forwarder contract shown in Listing 1. The create instruc-
tion dynamically creates a new account, deploys the Forwarder smart contract,
and finally returns the new account’s address. The send attribute specifies that
no initial amount of Ether is sent to the new account.

The smart contract code to be associated with a newly created account should
be available at creation time. In case of dynamic account creation, we chose to
design IELE with the stricter requirement that the code should have been avail-
able at creation time of the creator contract. For this purpose, a IELE contract
contains a list of external contracts that it is allowed to create at runtime, and
the code for each of these contracts should be available when the contract itself
is created. Recursively, the code of each contract that these contracts may create
should also be available. Hence, all code that can be stored in the blockchain is
available at the time when some end user posts an account creation transaction.

In Listing 2, the Wallet contract declares the Forwarder contract as external.
This means that if a new Wallet contract is to be created and deployed, at
that time both the code of the Wallet contract and the code of the Forwarder

contract should be provided and will be stored in the blockchain as part of the
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creation transaction. Later, during execution, the Wallet contract is able to
dynamically create Forwarder contracts using the available Forwarder code.

Listing 2. Wallet contract that creates Forwarder contracts� �
// Wallet contract that creates new accounts that forward funds sent to them to this wallet.

contract Wallet {

external contract Forwarder

define @init() {}

// @deposit is empty: any received funds are simply added the associated account ’s balance

define public @deposit() {}

// creates a new account that simply forwards any funds sent to it to this wallet and

// returns the address of the created forwarder account

define public @newForwarder() {

// ensure that the caller is the account associated with the wallet

%caller = call @iele.caller()

%owner = call @iele.address()

%isnotowner = cmp ne %caller , %owner

br %isnotowner , throw

// create a new account associated with a Forwarder contract and return its address

%status , %addr = create Forwarder () send 0

br %status , throw

ret %addr

throw:

call @iele.invalid()

}

}� �
Dynamic contract creation is thus guaranteed to only use code that has al-

ready become available in the blockchain; no dynamic code generation is allowed.
This design has two major advantages. Expensive code validation checks (well-
formedness, formal verification, etc.) need only take place when account creation
transactions are posted and never during code execution. Also code can be stored
in the blockchain separately from the account it is associated with: contracts can
be stored in a separate storage (with no duplicate contract code) and accounts
need only store a pointer to their associated code. This allows for cheap dynamic
account creation that doesn’t generate duplicate code in the blockchain.

Contract Initialization A special private @init function can be defined
and will be executed at contract creation time. This function typically contains
initialization code, e.g. initialization of the account storage. It is not callable
and it can only be invoked at contract creation time. This way, IELE guarantees
that the state of an already deployed contract cannot be reset maliciously by
invoking initialization code after contract creation, thus avoiding a weakness of
the current Ethereum design that has been exploited in the past [4].

3.2 IELE Functions

IELE functions are the main structural units of a IELE contract. A function
definition includes the function signature, the function body and whether or not
the function is public. A function signature includes a function name and names
of formal arguments. A public function can be called by other accounts, while
a private one can only be called by other functions within the same contract.
Listing 3 shows a simple implementation of the factorial as a IELE function.

Control Flow The function body code is organized in labeled blocks. The
execution falls through from the last instruction of a block to the first of the
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Listing 3. IELE function for factorial� �
define public @factorial(%n) {

// ensure %n >= 0

%lt = cmp lt %n, 0

br %lt, throw

%result = 1

condition:

%cond = cmp le %n, 0

br %cond , after_loop

loop_body:

%result = mul %result , %n

%n = sub %n, 1

br condition

after_loop:

ret %result

throw:

call @iele.invalid()

}� �
next one, or jumps to the start of a specific block. IELE supports jumps to
statically known targets only: The branch instruction accepts a block label as
an argument for the target of the jump. This differs from the EVM, where jumps
amount to pushing a possibly computed number on the stack and then jumping
to it regarded as an address. IELE ensures a statically known control flow graph
and thus makes static analysis and formal verification easier.

Function Calls A public function can be invoked manually by an end user
posting a transaction, or dynamically by another executing contract using IELE’s
account call instruction, call .. at. The address of the callee and the name of
the called function are provided at call time. The call may be accompanied with
an Ether amount to be transferred from the caller to the callee. IELE defines
a simple call/return convention: Called functions expect a specific number of
arguments (the number of formal arguments) and return a specific number of
return values (the number of return values at ret plus an exit status). If an
ABI error occurs (e.g. incorrect number of arguments, function not found or not
public, etc), a corresponding erroneous exit status is returned.

For reference, in EVM the caller just sends an arbitrary bytestream contain-
ing the call arguments. There is an externally defined ABI convention that most
EVM compilers follow, but it is not enforced. EVM does not have a notion of
callable function; instead, the execution always starts at the contract’s first in-
struction. The higher abstraction level of IELE’s calls and its more structured
design makes IELE contracts more readable and less tedious to formally verify.

EVM supports another type of account call, namely delegatecall, that
differs from the normal call, in that the code of the callee is executed in the
environment of the caller. This essentially means that the storage of the caller
account becomes accessible and writable from the callee code. EVM offers this
feature to avoid code duplication: typically library code is associated with a
single account and invoked with delegatecall by multiple clients. IELE offers
a different solution to the code duplication problem as discussed in Section 3.1.
For this reason and because delegatecall poses serious security concerns and
has been exploited in the past [41], we decided to drop delegatecall in IELE.

Deposit Handler A special public function, @deposit, can be defined for
a IELE contract and it is invoked whenever the account receives a payment
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that is not accompanied with a specific function call. A contract can forbid such
payments by refusing to define a @deposit function.

3.3 IELE Instructions

IELE instructions take the form of opcodes that accept a specific number of
arguments and return a specific number of values. There are various families of
instructions, including arithmetic, bitwise, comparison, and hashing operations.
There are also dedicated instructions for accessing the local memory, accessing
the account storage, and appending to the account log. Finally there are branch
instructions, the function call/return instructions, and the account create/selfde-
struct instructions. In addition to instructions, IELE supports a number of useful
intrinsics that can be called like private functions and provide functionality such
as querying the local or network state, cryptographic functions, etc.

IELE is register-based: Instructions operate on and store their output in
virtual registers. An infinite number of virtual registers is available, but the
actual number of registers used by the function can be determined statically by
counting the different register names used in its code. We chose to design IELE as
a register-based language, unlike the stack-based EVM, for two reasons. First,
it makes IELE code significantly more human-readable. Second, IELE formal
verification tools do not need to reason about the size of the operation stack
(bounded to 1024 words, a tedious requirement for verifying EVM programs).

3.4 IELE Datatypes

IELE uses arbitrary-precision signed integers. All virtual registers and account
storage locations hold values of this type. They can also be stored in and loaded
from the local memory. Arbitrary-precision arithmetic removes arithmetic over-
flows thus making specification and formal verification less tedious, as well as
making attacks like [32] that exploit arithmetic overflow bugs not viable.

4 Formal IELE Language Definition in K

Here we describe the formal semantics of IELE, from which several of our IELE
tools are generated automatically by the K framework, such as an interpreter,
a well-formedness checker, and a program verifier. In total, the IELE semantics
consists of 3122 lines of K code (not including literate comments), including 729
productions (for syntactic or semantic constructs) and 1255 semantic rules [38].
For comparison, the K EVM semantics in [19] consists of 2628 lines of K code,
including 510 productions and 1025 semantic rules; these total less than 20% the
size of the VM code component of the official EVM client implemented in C++
(about 15k LOC) [11]. A similar save would be seen if IELE had a conventional
VM implementation in C++, although such an implementation was never needed
because the IELE VM was automatically generated from the formal semantics.

4.1 IELE Formal Semantics Overview

The formal semantics of IELE [38] is spread among several files: iele-syntax.md
contains a quick introduction to the various features of the language along with



10 T. Kasampalis et al.

Listing 4. K syntax productions for IELE contracts� �
syntax ContractDefinition ::= "contract" IeleName "{" TopLevelDefinitions "}"

syntax TopLevelDefinitions ::= List{TopLevelDefinition, ""}

syntax TopLevelDefinition ::= FunctionDefinition

| GlobalDefinition

| ContractDeclaration

syntax GlobalDefinition ::= GlobalName "=" IntConstant

syntax ContractDeclaration ::= "external" "contract" IeleName

syntax FunctionDefinition ::= "define" FunctionSignature "{" Blocks "}"

| "define" "public" FunctionSignature "{" Blocks "}"

syntax FunctionSignature ::= GlobalName "(" FunctionParameters ")"

syntax FunctionParameters ::= LocalNames

syntax GlobalName ::= "@" IeleName

syntax LocalName ::= "%" IeleName

syntax LocalNames ::= List{LocalName, ","}� �
their syntactical definitions. iele.md contains the semantics of the various lan-
guage features and the specification of the program execution state. iele-gas.md
contains the semantics of the gas model of IELE. welformdness.md contains a
formal definition of a well-formed IELE contract, a syntactically valid IELE con-
tract free from type errors and other malformed instructions and/or functions.
Finally, data.md contains the semantics of various data structures and utilities
used in the rest of the specification. In the following paragraphs, we discuss ex-
amples from the formal specification of IELE along with features of K as needed.

Syntax The syntax of IELE is specified as a collection of EBNF-style pro-
ductions. As an example, the productions shown in Listing 4 define the syntax
for a IELE contract and its contents. The left-hand side of each syntax pro-
duction defines a K sort and the right-hand side of the production gives one
or more syntactically valid ways to construct a value of the sort. The keywords
enclosed in double quotes represent terminal symbols. K uses these productions
to automatically derive a parser for the language.

Execution State (Configuration) The execution state of a IELE program
is defined as a K configuration, that is an ordered list of potentially nested
cells, specified with an XML-like notation. At any given time during execution,
each cell contains a corresponding value that reflects the current execution state.
When declaring a K configuration, initial values for the cell contents are supplied.
Among other components, the configuration for IELE contains a description of
the local state and the network state.

1) The local state is created when a transaction is sent to a specific account
and contains information about the smart contract code associated with the
account, the intra-contract call stack, the amount of gas remaining, and the
state of the local memory and virtual register file (see Listing 5).

The id cell contains the address of the currently executing account and the
caller cell contains the address of the account that initiated the transaction.
The program cell and its nested cells contain the code of the currently executing
smart contract. The code is contained in one or more function cells, one for
each function of the smart contract. These cells in turn contain the code for
the corresponding function as a list of blocks and other information, such as the
function name and number of formal parameters, and a jump table mapping
label names to corresponding blocks. The gas cell contains the amount of gas
remaining. This cell is initialized upon receiving the transaction to the amount
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Listing 5. Configuration for local state� �
<id> 0 </id> // Currently executing account

<caller> 0 </caller> // Account that called current account

<gas> 0 </gas> // Current gas remaining

<program>

<functions>

<function multiplicity="*" type="Map">

<funcId> deposit </funcId> // Name of the function

<nparams> 0 </nparams> // Number of parameters

<jumpTable> .Map </jumpTable> // Jump table

<nregs> 0 </nregs> // Number of registers

<instructions>

(.Instructions .LabeledBlocks):Blocks

</instructions> // The blocks of the function

</function>

</functions>

// ... more cells ...

</program>

<localCalls> .List </localCalls> // Intra -contract call stack

<regs> .Array </regs> // Current values of registers

<localMem> .Map </localMem> // Current values of local memory� �
of gas sent from the caller and is being reduced while the smart contract code
executes. Finally, the cells regs and localMem map virtual register names and
local memory addresses to their containing values, while the cell localCalls
contains a stack of frames for all the functions in the current call stack.

2) The network state contains information about the Ethereum network, such
as active accounts, their balance in Ether, their storage contents, whether or not
they are associated with code, pending transactions, and more. The Ethereum
network state at any point in time can be reached by replaying all the trans-
actions that are stored in the blockchain up to this point. Instead of specifying
the network state as a transaction log, we choose to describe only the current
network state, as only it is relevant for the rest of the formal specification.

Listing 6 shows part of the network state that describes the state of active
Ethereum accounts. The accounts cell contains one cell per account in the net-
work. Active accounts have their address in the acctID cell and their balance in
the balance cell. The code cell contains any associated smart contract code. The
storage cell maps storage addresses to their current contents for the account’s
storage. The nonce cell contains a monotonically increasing integer that counts
the number of transactions performed by this account.

Listing 6. Configuration for network state� �
<network>

<accounts>

<account multiplicity="*" type="Map">

<acctID> 0 </acctID> // ID of account

<balance> 0 </balance> // Funds in account

<code> #emptyCode </code> // Contract of account

<storage> .Map </storage> // Permanent storage

<nonce> 0 </nonce> // Nonce of account

</account>

</accounts>

// ... more cells ...

</network>� �
Transition Rules Transition rules define valid rewrites of the current con-

figuration to a next one. Each rule consists of a left-hand side that is a pattern
over one or more configurations (meaning it may contain variables) and a right-
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hand side that describes how a matched configuration should be rewritten to the
next valid configuration. A pattern matches an actual configuration when there
exists an assignment of its variables that makes it equal to the configuration.
The derived interpreter that K generates matches patterns found in the left-
hand side of rules with the contents of the current configuration, and rewrites
it according to the right-hand side. The program verifier does the same, except
that it applies the rules symbolically, using unification instead of matching.

The k cell of the configuration drives the execution: It contains at any time a
list of execution steps to be matched and rewritten. The IELE semantics defines
a set of internal operators that represent different such execution steps and
maintains a list of such operators inside the k cell during execution.

As an example, Listing 7 shows the rules that specify the behavior of the
div instruction. The syntax production defines the internal operator #exec,
which represents the execution of a single IELE instruction. Both rules match
a configuration where the top of the k cell contains the #exec operator with a
division instruction. The first rule matches when the denominator is different
from zero, as specified in the requires clause. Then, the top of the k cell is
rewritten to another internal operator, #load, that loads the result of the division
to the left-hand side virtual register. The /Int and =/=Int operators are K built-
in operators for arbitrary-precision signed integers.

Listing 7. Rules for the div instruction� �
syntax InternalOp ::= "#exec" Instruction

// ------------------------------------------------

rule <k> #exec REG = div W0 , W1 => #load REG W0 /Int W1 ... </k>

requires W1 =/=Int 0

rule <k> #exec REG = div W0 , 0 => #exception USER_ERROR ... </k>� �
The second rule matches in the case of division by zero and rewrites the top of

the k cell to an #exception with the appropriate error code (here USER ERROR is a
macro that stands for corresponding error code). Other parts of the specification
provide rules that handle exceptions by reverting all account state changes since
the account started execution for the current transaction and returning the error
code to the caller. The ellipses (...) is K syntax for a pattern that matches the
rest of the k cell, which is a list of internal operators.

Listing 8. Rules for the #load internal operator� �
syntax InternalOp ::= "#load" LValue Int

| "#load" Int Int Int [klabel(#loadAux)]

// ------------------------------------------------------------

rule <k> #load % REG VALUE => #load REG VALUE {REGS [ REG ]} ...</k>

<regs> REGS </regs>

rule <k> #load REG VALUE OLD => . ... </k>

<regs> REGS => REGS [ REG <- VALUE ] </regs>

<currentMemory>

CURR => CURR -Int intSize(OLD) +Int intSize(VALUE)

</currentMemory>� �
The rules shown in Listing 8 specify the behavior of the #load internal oper-

ator, used to store values in virtual registers. Note that the syntax for a virtual
register (after desugaring) is % Int and the integer that is the name of the
register is used as an index in the register file to look up its value.



IELE: A Rigorously Designed Language for the Blockchain 13

The first rule accesses the current register file in the regs cell and looks up
the old value of the register to be updated. It then rewrites the #load operator
to an auxiliary operator that matches the second rule. The second rule updates
the register file using the K built-in operator [ <- ] for writing array elements.
It also updates the total size of the register file in the currentMemory cell; this
information is needed to compute the gas cost of the operation. The top of the
k cell is rewritten to “.”, which is a K idiom for the empty string.

As a last example, intSize, used above to compute the size in 64-bit words
of the given arbitrary-precision signed integer, is defined as shown in Listing 9.

Listing 9. Rules for the intSize operator� �
syntax Int ::= intSize ( Int ) [function]

// -----------------------------------------

rule intSize(N) => (log2Int(N) +Int 2) up/Int 64 requires N >Int 0

rule intSize(0) => 1

rule intSize(N) => intSize(~Int N) requires N <Int 0� �
The syntax production specifies the pattern intSize( ) as a member of the

Int sort (the arbitrary-precision signed integers) and attaches the function at-
tribute to it. This attribute informs K that the pattern is ”pure”, as in the rules
for rewriting it do not depend on any context other than its argument. The K
rewrite engine will attempt to rewrite these pattern as much as possible when
they appear anywhere in the current configuration.

5 Formal Verifier of IELE Smart Contracts

K provides a sound and relatively complete language-parametric program ver-
ifier. That is, given a language semantics as input, K yields a program verifier
for that language that can prove, modulo a domain reasoning oracle (currently
Z3 [9]), any reachability property about any program in that language. This im-
portant capability of K, that generalizes and eliminates the need for Hoare logic,
has already been demonstrated with languages that are much larger than IELE,
such as C, Java and JavaScript, and shown to offer the same level of automation
and performance as program verifiers crafted specifically for the languages in
question (e.g., VCC for C) [7]. Here we briefly explain how the K verifier works
with IELE as input language, to verify IELE smart contracts. We emphasize how
it compares with the same generic verifier instantiated with the EVM seman-
tics [19], which has been used extensively as part of commercial services [31,37].

As discussed in Section 3, formal verification of smart contracts was one of the
main forces driving the design of IELE, often in sharp contrast to the design of
the EVM: statically known jumps allow us to write and compose code properties
modularly; eliminating stack bounds for arithmetic expression evaluation allows
us to soundly focus only on functional properties of code and write simpler,
higher-level properties; eliminating the ABI encoding conventions allow us to
reason about any programs, not only about those that obey the conventions;
unbounded integers eliminate the need to reason about arithmetic overflow; etc.

We now discuss how to verify in IELE the most popular smart contract,
ERC20 [43], which provides functionality for maintaining and exchanging tokens.
Details about the verification of ERC20 in EVM can be found in [31,37].
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Formal Specification We start with ERC20-K [35], a complete language-
independent formalization of the high level business logic of the ERC20 standard.
ERC20-K clarifies what data (e.g., balances and allowances) are handled by
the various ERC20 functions and the precise meaning of those functions on
such data. More importantly, ERC20-K clarifies the meaning of all the corner
cases that the ERC20 standard omits to discuss, such as transfers to itself and
transfers that result in arithmetic overflow. From ERC20-K, we can easily derive
the specification for the ERC20 contract written in IELE by mapping ERC20-K
to the configuration of IELE. We follow the same approach and DSL used for
EVM [31], but taking the specifics of IELE into account. Mathematically, the
ERC20 specification consists of a set of reachability formulae of the form φ⇒ ψ,
with the meaning that the set of states satisfying/matching the pattern φ will
either reach a state in ψ or not terminate when executed with IELE.

Listing 10 shows a snippet of the specification for two possible behaviors
of transfer. For each case, it specifies the function name (fid), the function
parameters (callData and regs), the return value (output), whether an excep-
tion occurred (k), the log generated (log), the storage update (storage), and
the path-condition (requires). The success case ([transfer-success]) spec-
ifies that the function succeeds in transferring the VALUE tokens from the FROM

account to the TO account, with generating the corresponding log message, and
returns 1 (i.e., true), provided that the FROM account has sufficient balance. The
failure case ([transfer-failure]) specifies that the function throws an excep-
tion without modifying the account balances, if the FROM balance is insufficient.

Listing 10. Formal specification of ERC20 transfer� �
[transfer -success]

k: #execute => #end ...

callData: TO, VALUE , .Ints

output: _ => (1, .Ints)

regs: (0 |-> TO_ID 1 |-> VALUE .Map) => _

fid: transfer

log: ... (. => #eventLog(FROM , #topics(TransferEvent , FROM , TO), Int2Bytes(VALUE)))

storage: #mapKey({BALANCE}, FROM) |-> (BAL_FROM => BAL_FROM -Int VALUE)

#mapKey({BALANCE}, TO) |-> (BAL_TO => BAL_TO +Int VALUE)

...

requires: andBool 0 <=Int VALUE

andBool FROM =/=Int TO

andBool VALUE <=Int BAL_FROM

[transfer -failure]

k: #execute => #exception(4) ...

callData: TO, VALUE , .Ints

output: _ => _

regs: (0 |-> TO_ID 1 |-> VALUE .Map) => _

fid: transfer

log: ...

storage: #mapKey({BALANCE}, FROM) |-> BAL_FROM

#mapKey({BALANCE}, TO) |-> BAL_TO

...

requires: andBool 0 <=Int VALUE

andBool FROM =/=Int TO

andBool VALUE >Int BAL_FROM� �
Formal Verification We verified the hand-written IELE implementation

of ERC20 at [36], following the same automatic process used for EVM-level ver-
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ification described in [31]. All 15 high-level ERC20 properties were seamlessly
proved, automatically. It is insightful to compare the IELE and EVM verifica-
tion experiences. We found that most of the EVM-level verification challenges
described in [31] are addressed by the IELE language design. For example:

(Arithmetic Overflow) Since EVM performs modular arithmetic (i.e., mod
2256), detecting arithmetic overflow is critical for preventing security attacks.
When writing EVM-level specifications, one needs to reverse engineer constraints
on the input such that the arithmetic overflow checks in the program pass. For
example, in case transfer-success, one needs to add constraints to make sure
that the balance of TO account does not overflow. This is not only tedious, but
also imposes non-trivial proof obligations on SMT solvers. In contrast, IELE
arithmetic instructions admit unbounded integers, which not only makes the
smart contract more secure but also makes it much easier to specify correctly.

(Hash Collision) Due to the storage limitation of EVM, compilers such as
Solidity and Vyper use SHA3 hash to implement the builtin map. However, SHA3
is not cryptographically collision free. The contract developers simply assume
collisions will not occur during normal execution and SHA3 hash is modeled as an
injective function during the verification of EVM smart contracts. Unfortunately,
that is unsound: one can derive false, using the pigeonhole principle. In contrast,
IELE provides infinite memory and storage, so injective functions can be defined
to map different keys to different locations instead of SHA3 hashing.

6 Conclusion

We presented IELE, a new low-level language for smart contracts. The full formal
specification of IELE is available as a K specification, serving at the same time
as the implementation as well as a formal documentation of the language. The
specification/implementation of IELE is in par with the state of the art in the
world of smart contract virtual machines. With the support of a Solidity to IELE
compiler (see appendix B.1) and a fully functional Ethereum client that is based
on Mantis and powered by the IELE virtual machine (see appendix B.2), we were
able to deploy and execute IELE contracts in a real-world blockchain testnet.
This makes IELE the first practical language to be defined and implemented
directly as a formal semantics specification and significantly raises the bar for
how virtual machines for the blockchain must be developed. In this new and
disruptive field where security and correctness are paramount, it is in our view
unjustified to adopt any lower standards anymore.

Acknowledgements

We are grateful to IOHK (http://iohk.io) for funding the IELE project, as well
as for insightful discussions, encouragements and constructive criticisms along
the way. The work on the K framework and its tooling was supported in part
by NSF grant CNS 16-19275 and by the United States Air Force and DARPA
under Contract No. FA8750-18-C-0092.

http://iohk.io


16 T. Kasampalis et al.

A Appendix: IELE Gas Model

A gas model assigns a cost in “gas” to each instruction executed, and transaction
senders specify the maximum amount of gas to be used to run their transaction.
The assigned gas costs are fixed by the language definition (but transaction
senders choose the price they offer per unit of gas consumed).

The gas costs are meant to be proportional to computation time, with ad-
ditional charges for the amount of memory used during contract execution, and
larger costs for operations changing persistent state. In addition to all the fac-
tors that need to be considered when designing a gas model for the EVM, in
IELE we also have to consider the fact that integers are unbounded and thus
arithmetic operations on them can become arbitrarily complex. In particular,
we should chose the size-dependence of operations so there is no incentive to
explicitly implement arbitrary-precision arithmetic algorithms in IELE instead
of using the provided instructions.

Our gas costs for computation time are based on measuring relative perfor-
mance of instructions on various input sizes. For arithmetic operations significant
time is spent in the GMP library [17] which K uses to implement arbitrary-
precision arithmetic, and we checked the asymptotic performance of the algo-
rithms which GMP uses for the relevant input sizes. Many operations have per-
formance linear in the input, and have a simple cost formula with a constant
cost and a linear factor in input size. An example of a linear computational cost
formula is the formula for bitwise and, while an example of a constant cost for-
mula is the formula for iszero, an operation testing whether a number is zero.
Both formulas are shown in Listing 11.

Listing 11. Gas formulas for bitwise and and iszero� �
rule #compute [ _ = and W0, W1 ]

=> Gbitwise + min(size(W0),size(W1)) * Gbitwiseword

rule #compute [ _ = iszero W ] => Giszero� �
More complicated formulas were needed for multiplication, division, mod-

ulus, and modular exponentiation. For some of these operations inputs up to
several kilobits are commonly used in cryptography, so we considered inputs up
to several kilobytes. We found a simple quadratic cost model was not sufficient
across this range, but taking into account the Karatsuba algorithm [24] was suf-
ficient (on larger inputs more asymptotically efficient algorithms will dominate,
so a Karatsuba-based cost formula remains an overestimate).

Karatsuba multiplication has a complexity dominated by nlog3 2. The def-
inition in Listing 12 approximates that value for a given n with a family of
quadratic functions of the form a2 ∗ n2 + a1 ∗ n+ a0, such that the approxima-
tion is continuous and differentiable and its derivative continuous.

Listing 12. Approximating nlog3 2� �
rule #overApproxKara(N) =>

#if N <=Int 32 #then N *Int N

#else #if N <=Int 1024

#then N *Int N /Int 4 +Int 48 *Int N -Int 768

#else N *Int N /Int 16 +Int 432 *Int N -Int 197376

#fi #fi� �
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Argument sizes are counted in 64-bit words, which corresponds to the actual
threshold where costs change on 64-bit hardware, and may also allow simplified
gas estimation that ignores input sizes to be useful for some code. Exponentiation
without modulus is the major exception, because of the drastic dependence of
result size on the value of the exponent the cost calculation considers the exact
position of the highest bit set in the highest word of the exponent (computed
using the #adjustedBitLength function):

Listing 13. Approximating gas costs for exponentiation� �
rule #compute [ _ = exp W0 , W1 ] => Cexp(intSize(W0), W0, W1)

rule Cexp(L1, W1, W2)

=> Gexpkara *Int #overApproxKara(#adjustedBitLength(L1, W1)

*Int W2 /Int 64)

+Int Gexpword *Int L1

+Int Gexp� �
The gas cost for memory is based on peak memory consumption. Memory

consumption includes values in registers and in local memory, and also stack
frames for contract-local function calls. We based our costs on the design of
EVM, where memory consumption has a quadratic cost. EVM is a stack based
language and has a hard limit on stack size rather than accounting for stack size
as part of their gas cost for memory, so we allow an amount of memory up to
the maximum size of the EVM stack to be used with no charge. Whenever peak
memory consumption increases the incremental cost is charged immediately.
While memory usage remains below the previous peak there is no charge for
increasing or decreasing the amount of memory used. To account for operations
where the result size can not be precisely predicted from the input size alone,
some operations use an upper bound of the result size instead: the gas is charged
according to the the effect of the upper bound but the peak is actually updated
after the operation and according to the actual result size.

Memory costs for computational operations that only return results in a
register are defined in terms of an auxiliary function #registerDelta which
updates peak memory and assesses gas cost given the target register and the
upper bound on result size; see Listing 14.

Listing 14. Updating peak memory and assesing gas costs� �
rule <k> #registerDelta(% REG, NEWSIZE) => #deductMemory(PEAK)...</k>

<currentMemory> CURR </currentMemory>

<regs> REGS </regs>

<peakMemory>

PEAK => maxInt(PEAK,

CURR +Int NEWSIZE -Int intSize({REGS[REG]}))

</peakMemory>� �
Most bitwise operations return results at most as large as an input. Addition

or subtraction can produce a result one word larger than an input. Similarly to
the gas costs rules, the result size for exponentiation without modulus considers
the exact position of the highest bit set in the highest word of the exponent. For
example, the formulas for or, add, and exp are shown in Listing 15.

For storage based costs, operations which transfer cryptocurrency, create new
accounts, or modify persistent storage have high costs, reflecting that these per-
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Listing 15. Gas formulas for or, add, and exp� �
rule #memory [ REG = or W0, W1 ]

=> #registerDelta(REG, max(size(W0),size(W1)))

rule #memory [ REG = add W0 , W1 ]

=> #registerDelta(REG, max(size(W0), size(W1)) +1)

rule #memory [ REG = exp W0 , W1 ]

=> #registerDelta(REG, #adjustedBitLength(intSize(W0), W0)

*Int W1 /Int 64)� �
manently increase the size of blockchain history. Operations which query persis-
tent state also have elevated costs, since they might require retrieval of data from
secondary storage. Here a major departure from EVM is that we do not charge
for programmatically creating a new smart contract account from contract code
that has already been uploaded to the blockchain. This is a safe replacement for
cases where EVM programs would use the dangerous delegatecall instruction
purely to reduce the cost of creating smart contracts sharing behavior. For ex-
ample, the cost Gbalance of looking up the account balance is greater than 100
times the cost Gbitwise of bitwise operations.

Overall, our gas model is designed to allow for instructions to work on ar-
bitrarily large values, and to allow IELE to run without artificial limits on the
size of data or call stacks, while preserving the existing goals of the EVM gas
model.

B Appendix: IELE Infrastructure and Evaluation

B.1 ISOLC: The Solidity to IELE compiler

Solidity [12] is the most popular high-level language for Ethereum smart con-
tracts, and has been used to implement tens of thousands of contracts [16], some
of which handling hundreds of millions USD [28]. Because of Solidity’s popular-
ity and in order to have an automated way to obtain IELE contracts for testing,
we developed a Solidity-to-IELE compiler, isolc [39]. This was a necessary, albeit
manual and tedious, 9 man-month endeavor. Our compiler reuses much of the
front-end of the Solidity-to-EVM compiler, solc, but implements a new back-end
to generate IELE code. We used isolc to compile about 1000 Solidity smart con-
tracts of the solc test suite to IELE, including real-world contracts, such as a
multi-signature wallets and ERC20 compliant tokens.

At the time of writing, the compiler supports most of the latest version of
Solidity (version 0.4.23) with some additional features. The Solidity features
that are not supported are those exposing low-level EVM features that IELE
deliberately does not support, as discussed in Section 3. The additional features
are taking advantage of the new IELE features and serve as replacements for the
unsupported features. Below we discuss representative examples.

Low-level calls Solidity supports a low-level account call built-in that has sim-
ilar semantics with an EVM call: The caller can use it to send an arbitrary
bytestream of data to the callee. For security, IELE disallows such low-level op-
erations; normal calls can and should be used instead. Hence we drop support
for this built-in when compiling to IELE.
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delegatecall is another low-level Solidity built-in for account calls that exposes
the corresponding EVM functionality. As discussed in Section 3.2, for security,
IELE dropped this functionality (and the low-level calls); see also Section B.3.
Hence our Solidity compiler does not support this built-in.

Arbitrary-precision integer types Solidity only provides fixed-width integer types
with bit width that can vary from 1 to 256 bits. We add two new arbitrary-
precision integer types (a signed and an unsigned type) to take advantage of
IELE’s arbitrary-precision arithmetic.

The full list of feature differences can be found in the isolc repository [39]. We
also provide examples of how to avoid/replace these features in existing Solidity
smart contracts, so that they can be compiled to IELE.

B.2 IELE VM and Integration with Blockchain

Ethereum transactions modify the global state of the network by transferring
Ether between accounts and optionally invoking and/or deploying smart contract
code in the blockchain. These transactions are also stored in the blockchain and
can be replayed by an Ethereum client to get a current view of the network’s
global state. In a IELE-based network, when IELE code is invoked and/or de-
ployed as part of a transaction, a IELE VM executes the code and updates the
network state. We have implemented such a VM using two tools both auto-
generated from the language specification: a IELE interpreter and a IELE well-
formedness checking tool.

We have also integrated our IELE VM with the Mantis Ethereum client [22].
Using Mantis we have successfully deployed and executed IELE smart contracts
on an Ethereum-based blockchain [20]. While replaying transactions, Mantis
sends relevant transactions to the IELE VM. In turn, the IELE VM parses
incoming transactions to figure out which function of which account needs to be
invoked and then executes the corresponding IELE code using the interpreter. In
case the transaction involves creation of a new account and deployment of smart
contract code, the IELE VM uses the well-formedness checker to verify the code
being stored in the blockchain. During IELE code execution, Mantis provides the
VM with information about the current global state (e.g. contents of an account’s
storage). Finally, the IELE VM uses the output of the interpreter to determine
the modifications on the global network state caused by the transaction and
communicates those to Mantis.

B.3 Evaluation

In this section we evaluate the following claims:

– The formal specification of IELE is adequate. The automatically generated
IELE VM is then also adequate.

– The Solidity to IELE compiler is also adequate.
– The design approach based on formal semantics is realistic in terms of effort.
– The IELE VM has acceptable performance.
– The IELE design prevents exploits found in EVM contracts that have cost

millions of USD in the past.
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Adequacy To demonstrate that the IELE language specification, the derived
IELE VM, and the Solidity to IELE compiler are adequate, we test all these tools
in a pipeline similar to the one used by real-world smart contract developers:
We compile a suite of Solidity contracts to IELE and then deploy the IELE
contracts to an Ethereum blockchain and execute them using the IELE VM and
the Mantis client. We use the test suite of the Solidity to EVM compiler [13],
which is also used to test the production version of the Solidity to EVM compiler.
We assume that a test case has passed when the following are true: the contract
compiles to IELE successfully, the IELE code is deployed successfully, and the
expected result is returned by the deployed code when it is invoked with the
test’s input. Our pipeline succeeds in 100% of the tests, thus providing high
confidence on the adequacy of both the Solidity to IELE compiler and the IELE
specification/implementation.

Design and Implementation Effort Although the formal specification of
IELE is larger than that of the EVM, the design, formal specification, imple-
mentation, and testing of IELE took an estimated 10 man-months. Various lower
level data structures and functions are used across the semantics definition, and
we tried to reuse the publicly available KEVM definition [19] as much as possible
for this part of the specification. We argue that this is a short amount of time
for designing a full language along with its formal specification and a reference
implementation.

Performance evaluation We evaluate two aspects of the IELE implementa-
tion: the binary size generated from the Solidity to IELE compiler and execution
speed of IELE VM. For baseline, we use the Solidity to EVM compiler (version
0.4.21, the most recent version of the compiler compatible with KEVM) and the
KEVM.

Binary Size We compiled the Solidity unit tests and 5 large contracts to both
EVM and IELE and measured the size of the resulting binary IELE and EVM
programs. The geometric mean of the ratios of the EVM binary size over the
corresponding IELE binary size for each of the unit tests is 1.18, meaning that
the IELE binary is on average about 84% of the size of the corresponding EVM
binary. For the large contracts, the ratio is 0.85, meaning that the IELE binary
is on average about 117% of the size of the corresponding EVM binary. The size
reduction in the small programs is due to the fact that IELE is a register-based
language and thus avoids stack manipulation opcodes like PUSH found in EVM
programs. However our current compiler uses a naive code generation algorithm,
with no optimizations, and as a result generates more code for larger programs.
The IELE binary size will be reduced significantly as the compiler matures.

Execution Time We deployed and executed the above programs using Mantis
along with the IELE VM and KEVM. The experiment ran on an AMD Ryzen
Threadripper 1950X @1.9GHz processor with 16 cores and 64GB of memory. All
the processing is single-threaded. The geometric mean of the ratios of the EVM
transaction time over the corresponding IELE transaction time for the unit tests
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is 1.38, meaning that the IELE VM is on average 1.38 times faster than KEVM.
For the large contracts, the ratio is 1.18.

These results show that the Solidity to IELE compiler and the IELE VM
have acceptable performance. These improvements in performance over KEVM
should be regarded as a bonus for a cleaner design and the choice of a register-
based architecture, because as explained in Section 3, the design goals of IELE
were not related to performance.

Security Here we review three costly recent exploits of smart contracts. We
discuss the exploit and how it could be avoided in a IELE-based blockchain.

Parity Wallet Freeze (Nov 2017) [41] Parity’s wallet smart contract can be as-
sociated with accounts of Ethereum users to provide them with more advanced
functionality than simply transferring Ether, such as transaction logging, set-
ting withdrawal limits, etc. In order to avoid code duplication, the wallet smart
contract does not contain any code that mutates the user account’s state. All
the state-modifying logic is deployed as a library smart contract and associated
with a single account. Wallet accounts invoke code from this library using EVM’s
delegatecall, a special account call where the called library code modifies the
state of the caller account instead of its own. Unfortunately, a bug in the library
smart contract allowed an attacker to take ownership of the account and sub-
sequently delete it. As a result, the wallet accounts lost any ability to modify
their state, including transferring their balances elsewhere. The cost of this at-
tack has been estimated to about 150M USD of funds frozen in over 500 wallet
accounts. Note that, by the nature of the blockchain, accepted transactions are
irreversible, so it is not possible for Parity to roll back the deletion transaction
or for users to roll back the wallet code deployment transactions.

Listing 16. Solidity contract that showcases the DAO exploit� �
contract Vulnerable {

mapping(address => uint) userBalances;

function addToBalance() payable {

userBalances[msg.sender] = userBalances[msg.sender] + msg.value;

}

function withdrawBalance() {

uint amountToWithdraw = userBalances[msg.sender];

// The next line performs an account call back to

// the caller of this function , sending Ether equal

// to the value of ammountToWithdraw.

// The low -level Solidity call is used with no arguments ,

// meaning that the fallback function of the receiver

// will be invoked.

msg.sender.call.value(amountToWithdraw )();

userBalances[msg.sender] = 0;

}

}� �
This kind of exploit reveals one of the many dangers of the delegatecall

functionality of EVM. IELE has a completely different model for code reuse that
does not rely on libraries and delegatecall (see Section 3.1). In fact delegatecall
is not part IELE, hence making such an attack impossible.
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Parity Wallet Breach (Jul 2017) [4] This attack is again related to Parity’s wal-
let. The wallet smart contract has support for multiple owner accounts that have
access to the wallet account funds. The wallet account keeps a list of the owner
accounts in its storage. This list is initialized by a separate transaction after
the wallet contract is deployed, since EVM does not allow storage initialization
at contract creation time. Instead, the wallet smart contract includes an owner
initialization function that has to be called at a later time. The attack took ad-
vantage of a bug in the wallet’s design, where the owner initialization function
could be called by anyone. The attackers reinitialized ownership of various wal-
let accounts to themselves giving them the ability to withdraw those accounts’
balances. More than 30M USD was stolen, before wallet users became aware of
the attack and transferred their funds elsewhere.

The IELE design does not necessarily prevent someone from writing a con-
tract that allows anyone to reinitialize its state, but IELE supports storage
initialization at contract creation time through the @init function (see Sec-
tion 3.1). In a IELE-based blockchain, it is not necessary to create contracts and
then initialize them, as is the case for EVM. Contract deployment and initial-
ization in IELE can be done in a single step: @init is called at contract creation
time and can contain initialization code. Moreover, @init is private, so it cannot
be invoked by other accounts through a call.

The DAO attack (Jun 2016) [8] A simplified version of the vulnerable contract
in the DAO attack is shown in Listing 16. The vulnerable contract functions as
a bank, where client accounts deposit Ether to the contract’s balance and the
contract maintains a mapping, userBalances, from each client account to its
balance. The function addToBalance accepts an Ether amount (accessible within
the function as msg.value from the caller account (accessible within the function
as msg.sender) and records the deposited amount in the contract’s mapping.
The vulnerable function named withdrawBalance sends back to the caller ac-
count the whole amount of Ether that this account has so far deposited. The
function looks up the current total balance of the caller account in the contract’s
mapping, sends that amount of Ether to the caller account, and finally updates
the caller account’s balance to 0. Since sending Ether involves performing a call
back to the caller account, withdrawBalance uses the low-level call of Solidity
(Section B.1). This callback (where no particular function is called) will invoke
the so-called fallback function of the client, and a malicious client can invoke
withdrawBalance again from its fallback function. Thus withdrawBalance is
reentered after the Ether has been sent but before the balance is updated in the
contract’s map.

The attacker exploited this vulnerability and stole more than 50M USD from
the contract. This attack prompted for the first time a hard fork in the Ethereum
blockchain [6].

Of course, the exploit is eliminated by reordering the sending of Ether and
the map update. However, there is a more disciplined way to eliminate it: using
the high-level Solidity built-ins transfer or send instead of using the low-level
call. These built-ins provide the callee with a pre-defined very low amount of
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gas that is not even enough for a single callback from the callee. On the other
hand the low-level call provides the callee with a custom amount of gas, by
default the whole remaining gas of the caller. As discussed in Section B.1, the
Solidity to IELE compiler does not support the low-level call, hence making
this particular case of re-entrancy inexpressible.
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the Ethereum virtual machine. In: 2018 IEEE 31st Computer Security Foundations
Symposium. pp. 204–217. IEEE (2018). https://doi.org/10.1109/CSF.2018.00022

20. IOHK: IELE Testnet. https://testnet.iohkdev.io/iele/ (2019)
21. IOHK: KEVM Testnet. https://testnet.iohkdev.io/kevm/ (2019)
22. IOHK: Mantis Ethereum Classic Client (2019), https://iohk.io/blog/mantis-

ethereum-classic-beta-release
23. IOHK: Plutus testnet (2019), https://testnet.iohkdev.io/plutus/
24. Karatsuba, A., Ofman, Y.: Multiplication of many-digital numbers by auto-

matic computer. In: Dokl. Akad. Nauk SSSR. vol. 145, pp. 293–294 (1962),
http://mi.mathnet.ru/eng/dan26729

25. KEVM: Jello paper (2019), https://jellopaper.org/
26. Lattner, C., Adve, V.: LLVM: A Compilation Framework for Lifelong Program

Analysis & Transformation. In: Proceedings of the International Symposium on
Code Generation and Optimization: Feedback-directed and Runtime Optimization.
pp. 75–. CGO ’04, IEEE Computer Society, Washington, DC, USA (2004), http:
//llvm.org

27. Milner, R., Tofte, M., Harper, R., MacQueen, D.: The definition of standard ML :
revised. MIT Press, Cambridge, Mass (1997)

28. Multisig: Multi-signature Wallet Ethereum Account. https://etherscan.io/address/
0xab7c74abc0c4d48d1bdad5dcb26153fc8780f83e#code (2019)

29. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008), https://
bitcoin.org/bitcoin.pdf

30. Park, D., Stefanescu, A., Rosu, G.: KJS: A complete formal semantics of
JavaScript. In: Proceedings of the 36th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI’15). pp. 346–356. ACM (June
2015). https://doi.org/10.1145/2737924.2737991

31. Park, D., Zhang, Y., Saxena, M., Daian, P., Roşu, G.: A Formal Verifica-
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