Skip to main content

Innovating Medical Image Analysis via Spatial Logics

  • Chapter
  • First Online:
From Software Engineering to Formal Methods and Tools, and Back

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11865))

Abstract

Current computer-assisted medical imaging for the planning of radiotherapy requires high-level mathematical and computational skills. These are often paired with the case-by-case integration of highly specialised technologies. The lack of modularity at the right level of abstraction in this field hinders research, collaboration and transfer of expertise among medical physicists, engineers and technicians. The longer term aim of the introduction of spatial logics and spatial model checking in medical imaging is to provide an open platform introducing declarative medical image analysis. This will provide domain experts with a convenient and very concise way to specify contouring and segmentation operations, grounded on the solid mathematical foundations of Topological Spatial Logics. We show preliminary results, obtained using the spatial model checker VoxLogicA, for the automatic identification of specific brain tissues in a healthy brain and we discuss a selection of challenges for spatial model checking for medical imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Topochecker: a topological model checker, see http://topochecker.isti.cnr.it, https://github.com/vincenzoml/topochecker.

  2. 2.

    Part of the central nervous system in the brain.

  3. 3.

    Place where neurons are located in the outer part of the brain.

  4. 4.

    VoxLogicA: https://github.com/vincenzoml/VoxLogicA.

  5. 5.

    Sometimes called von Neumann adjacency. The relation is reflexive and symmetric.

  6. 6.

    The reader interested in the formal definition of closure spaces and on their properties is referred to the literature (see e.g. [12, 13, 21,22,23] and references therein). Here it suffices to say that \(\mathcal {C}(Y)\) is essentially the set of points close to any point in Y; note that, since closure spaces generalize topological spaces, in the latter, the closure operator \(\mathcal {C}\) coincides with topological closure, so that, for instance, in the monodimensional Euclidean space \(\mathbb {R}\), \(\mathcal {C}([0,1))= \mathcal {C}((0,1))=\mathcal {C}((0,1])=\mathcal {C}([0,1])=[1,0]\).

  7. 7.

    We refer to [13] for a discussion on paths on the more general class of closure spaces, including e.g. Euclidean spaces, including e.g. Euclidean spaces.

  8. 8.

    Note that this colour does not correspond to any atomic predicate and so it is not part of the model; we use it only for illustration purposes.

  9. 9.

    See https://brainweb.bic.mni.mcgill.ca/brainweb/anatomic_normal_20.html (Publicly available).

  10. 10.

    The NIfTI file format is a special data format by the Neuro-imaging Informatics Technology Initiative, https://nifti.nimh.nih.gov/.

  11. 11.

    Again, note that we are processing a 3D image.

  12. 12.

    See http://brainweb.bic.mni.mcgill.ca/brainweb/anatomic_normal_20.html.

  13. 13.

    \(Dice = 2*\text {TP} / (2*\text {TP} + \text {FN} +\text {FP})\), where \(\text {TP}\) denotes True Positive and \(\text {FN}\) denotes False Negative.

  14. 14.

    The Insight Segmentation and Registration Toolkit, see https://itk.org and http://www.simpleitk.org.

  15. 15.

    Some operators may be derived from others; for this reason in the definition of the language we use a minimal set of connectives. As usual in logics, there are several different choices for such a set.

References

  1. Aiello, M., Pratt-Hartmann, I., van Benthem, J. (eds.): Handbook of Spatial Logics. Springer, Dordrecht (2007). https://doi.org/10.1007/978-1-4020-5587-4

    Book  MATH  Google Scholar 

  2. Aubert-Broche, B., Griffin, M., Pike, G., Evans, A., Collins, D.: Twenty new digital brain phantoms for creation of validation image data bases. IEEE Trans. Med. Imaging 25(11), 1410–1416 (2006). https://doi.org/10.1109/TMI.2006.883453

    Article  Google Scholar 

  3. Baier, C., Katoen, J.: Principles of Model Checking. MIT Press, Cambridge (2008)

    MATH  Google Scholar 

  4. Banci Buonamici, F., Belmonte, G., Ciancia, V., Latella, D., Massink, M.: Spatial logics and model checking for medical imaging. Int. J. Softw. Tools Technol. Transf. (2019). https://doi.org/10.1007/s10009-019-00511-9. Online First

  5. Bartocci, E., Bortolussi, L., Loreti, M., Nenzi, L.: Monitoring mobile and spatially distributed cyber-physical systems. In: Talpin, J., Derler, P., Schneider, K. (eds.) Proceedings of the 15th ACM-IEEE International Conference on Formal Methods and Models for System Design, MEMOCODE 2017, Vienna, Austria, 29 September–02 October 2017, pp. 146–155. ACM (2017). https://doi.org/10.1145/3127041.3127050

  6. Belmonte, G., et al.: A topological method for automatic segmentation of glioblastoma in mr flair for radiotherapy - ESMRMB 2017, 34th annual scientific meeting. Magn. Reson. Mater. Phys. Biol. Med. 30(S1), 437 (2017). https://doi.org/10.1007/s10334-017-0634-z

    Article  Google Scholar 

  7. Belmonte, G., Ciancia, V., Latella, D., Massink, M.: From collective adaptive systems to human centric computation and back: spatial model checking for medical imaging. In: ter Beek, M.H., Loreti, M. (eds.) Proceedings of the Workshop on FORmal methods for the quantitative Evaluation of Collective Adaptive SysTems, FORECAST@STAF 2016, Vienna, Austria, 8 July 2016. EPTCS, vol. 217, pp. 81–92 (2016). https://doi.org/10.4204/EPTCS.217.10

  8. Belmonte, G., Ciancia, V., Latella, D., Massink, M.: VoxLogicA: a spatial model checker for declarative image analysis. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019, Part I. LNCS, vol. 11427, pp. 281–298. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17462-0_16. Preprint http://arxiv.org/abs/1811.05677

    Chapter  Google Scholar 

  9. van Benthem, J., Bezhanishvili, G.: Modal logics of space. In: Handbook of Spatial Logics [1], pp. 217–298

    Google Scholar 

  10. Ciancia, V., Gilmore, S., Latella, D., Loreti, M., Massink, M.: Data verification for collective adaptive systems: spatial model-checking of vehicle location data. In: Eighth IEEE International Conference on Self-Adaptive and Self-Organizing Systems Workshops, SASOW, pp. 32–37. IEEE Computer Society (2014)

    Google Scholar 

  11. Ciancia, V., Grilletti, G., Latella, D., Loreti, M., Massink, M.: An experimental spatio-temporal model checker. In: Bianculli, D., Calinescu, R., Rumpe, B. (eds.) SEFM 2015. LNCS, vol. 9509, pp. 297–311. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-49224-6_24

    Chapter  Google Scholar 

  12. Ciancia, V., Latella, D., Loreti, M., Massink, M.: Specifying and verifying properties of space. In: Diaz, J., Lanese, I., Sangiorgi, D. (eds.) TCS 2014. LNCS, vol. 8705, pp. 222–235. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44602-7_18

    Chapter  Google Scholar 

  13. Ciancia, V., Latella, D., Loreti, M., Massink, M.: Model checking spatial logics for closure spaces. Log. Methods Comput. Sci. 12(4) (2016). http://lmcs.episciences.org/2067

  14. Ciancia, V., Latella, D., Massink, M.: Embedding RCC8D in the collective spatial logic CSLCS. In: Boreale, M., Corradini, F., Loreti, M., Pugliese, R. (eds.) Models, Languages, and Tools for Concurrent and Distributed Programming. LNCS, vol. 11665, pp. 260–277. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21485-2_15

    Chapter  Google Scholar 

  15. Ciancia, V., Gilmore, S., Grilletti, G., Latella, D., Loreti, M., Massink, M.: Spatio-temporal model checking of vehicular movement in public transport systems. STTT 20(3), 289–311 (2018). https://doi.org/10.1007/s10009-018-0483-8

    Article  Google Scholar 

  16. Ciancia, V., Latella, D., Loreti, M., Massink, M.: Spatial logic and spatial model checking for closure spaces. In: Bernardo, M., De Nicola, R., Hillston, J. (eds.) SFM 2016. LNCS, vol. 9700, pp. 156–201. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-34096-8_6

    Chapter  MATH  Google Scholar 

  17. Ciancia, V., Latella, D., Massink, M., Paškauskas, R.: Exploring spatio-temporal properties of bike-sharing systems. In: 2015 IEEE International Conference on Self-Adaptive and Self-Organizing Systems Workshops, SASO Workshops 2015, Cambridge, MA, USA, 21–25 September 2015, pp. 74–79. IEEE Computer Society (2015). https://doi.org/10.1109/SASOW.2015.17

  18. Ciancia, V., Latella, D., Massink, M., Paškauskas, R., Vandin, A.: A tool-chain for statistical spatio-temporal model checking of bike sharing systems. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9952, pp. 657–673. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47166-2_46

    Chapter  Google Scholar 

  19. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press (2001). http://books.google.de/books?id=Nmc4wEaLXFEC

  20. Donzé, A., Ferrère, T., Maler, O.: Efficient robust monitoring for STL. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 264–279. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8_19

    Chapter  Google Scholar 

  21. Galton, A.: The mereotopology of discrete space. In: Freksa, C., Mark, D.M. (eds.) COSIT 1999. LNCS, vol. 1661, pp. 251–266. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48384-5_17

    Chapter  Google Scholar 

  22. Galton, A.: A generalized topological view of motion in discrete space. Theor. Comput. Sci. 305(1–3), 111–134 (2003). https://doi.org/10.1016/S0304-3975(02)00701-6

    Article  MathSciNet  MATH  Google Scholar 

  23. Galton, A.: Discrete mereotopology. In: Calosi, C., Graziani, P. (eds.) Mereology and the Sciences. SL, vol. 371, pp. 293–321. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-05356-1_11

    Chapter  Google Scholar 

  24. Gambino, O., Rundo, L., Cannella, V., Vitabile, S., Pirrone, R.: A framework for data-driven adaptive GUI generation based on DICOM. J. Biomed. Inform. 88, 37–52 (2018). https://doi.org/10.1016/j.jbi.2018.10.009

    Article  Google Scholar 

  25. Grosu, R., Smolka, S., Corradini, F., Wasilewska, A., Entcheva, E., Bartocci, E.: Learning and detecting emergent behavior in networks of cardiac myocytes. Commun. ACM 52(3), 97–105 (2009)

    Article  Google Scholar 

  26. Haghighi, I., Jones, A., Kong, Z., Bartocci, E., Grosu, R., Belta, C.: SpaTel: a novel spatial-temporal logic and its applications to networked systems. In: Proceedings of the 18th International Conference on Hybrid Systems: Computation and Control, HSCC 2015, pp. 189–198. ACM, New York (2015)

    Google Scholar 

  27. Kontchakov, R., Kurucz, A., Wolter, F., Zakharyaschev, M.: Spatial logic + temporal logic = ? In: Handbook of Spatial Logics [1], pp. 497–564

    Google Scholar 

  28. Kwan, R.S., Evans, A., Pike, G.: MRI simulation-based evaluation of image-processing and classification methods. IEEE Trans. Med. Imaging 18(11), 1085–1097 (1999)

    Article  Google Scholar 

  29. Litjens, G.J.S., et al.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017). https://doi.org/10.1016/j.media.2017.07.005

    Article  Google Scholar 

  30. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In: Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT 2004. LNCS, vol. 3253, pp. 152–166. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30206-3_12

    Chapter  MATH  Google Scholar 

  31. Massink, M., Paškauskas, R.: Model-based assessment of aspects of user-satisfaction in bicycle sharing systems. In: Sotelo Vazquez, M., Olaverri Monreal, C., Miller, J., Broggi, A. (eds.) 18th IEEE International Conference on Intelligent Transportation Systems, pp. 1363–1370. IEEE (2015). https://doi.org/10.1109/ITSC.2015.224

  32. Mazzara, G., Velthuizen, R., Pearlman, J., Greenberg, H., Wagner, H.: Brain tumor target volume determination for radiation treatment planning through automated mri segmentation. Int. J. Radiat. Oncol. Biol. Phys. 59(1), 300–312 (2004)

    Article  Google Scholar 

  33. Menze, B., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015)

    Article  Google Scholar 

  34. Nenzi, L., Bortolussi, L.: Specifying and monitoring properties of stochastic spatio-temporal systems in signal temporal logic. In: 8th International Conference on Performance Evaluation Methodologies and Tools, VALUETOOLS 2014, Bratislava, Slovakia, 9–11 December 2014. ICST (2014)

    Google Scholar 

  35. Nenzi, L., Bortolussi, L., Ciancia, V., Loreti, M., Massink, M.: Qualitative and quantitative monitoring of spatio-temporal properties. In: Bartocci, E., Majumdar, R. (eds.) RV 2015. LNCS, vol. 9333, pp. 21–37. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23820-3_2

    Chapter  Google Scholar 

  36. Randell, D.A., Cui, Z., Cohn, A.G.: A spatial logic based on regions and connection. In: Nebel, B., Rich, C., Swartout, W.R. (eds.) Proceedings of the 3rd International Conference on Principles of Knowledge Representation and Reasoning (KR 1992), pp. 165–176. Morgan Kaufmann, Burlington (1992)

    Google Scholar 

  37. Randell, D.A., Landini, G., Galton, A.: Discrete mereotopology for spatial reasoning in automated histological image analysis. IEEE Trans. Pattern Anal. Mach. Intell. 35(3), 568–581 (2013). https://doi.org/10.1109/TPAMI.2012.128

    Article  Google Scholar 

  38. Spyridon (Spyros) Bakas, et al. (eds.): 2017 International MICCAI BraTS Challenge: Pre-conference Proceedings, September 2017. https://www.cbica.upenn.edu/sbia/Spyridon.Bakas/MICCAI_BraTS/MICCAI_BraTS_2017_proceedings_shortPapers.pdf

Download references

Acknowledgments

This paper was written for the Festschrift in honour of Director of Research Dr. Stefania Gnesi. We would like to thank Stefania for the many years she has been coordinating our Formal Methods and Tools Laboratory at ISTI-CNR, and we hope she will continue to contribute to our Lab for many years to come. She guided the group safely through the many periods of instability of very different nature, and she did so with confidence and optimism. If now we have so many young (and less young) motivated formal methods researchers in our group, that explore and develop new and creative directions of formal methods research, both in theory and for applications, this is made possible, in a large part, thanks to her tireless efforts in all these years.

Part of this work has been developed in the context of the Italian MIUR-PRIN 2017 project “IT MaTTerS: Methods and Tools for Trustworthy Smart Systems”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mieke Massink .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Belmonte, G., Ciancia, V., Latella, D., Massink, M. (2019). Innovating Medical Image Analysis via Spatial Logics. In: ter Beek, M., Fantechi, A., Semini, L. (eds) From Software Engineering to Formal Methods and Tools, and Back. Lecture Notes in Computer Science(), vol 11865. Springer, Cham. https://doi.org/10.1007/978-3-030-30985-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30985-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30984-8

  • Online ISBN: 978-3-030-30985-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics