Skip to main content

Control of a Microturbine Using Neural Networks

  • Conference paper
  • First Online:
Applied Computer Sciences in Engineering (WEA 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1052))

Included in the following conference series:

  • 1234 Accesses

Abstract

In many distributed generation applications, microturbines are used for energy conversion. On the other hand, neural networks are a suitable option for the control of complex non-linear systems. Thus, in this article is shown the speed control of a microturbine using neural networks. For this process, the identification of the microturbine using a neural network is carried out in order to subsequently perform the optimization of the other neural network used for control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dugan, R., McDermott, T., Ball, G.: Planning for distributed generation. IEEE Ind. Appl. Mag. 7, 80–88 (2001)

    Article  Google Scholar 

  2. Tong, J.P., Yu, T.: Nonlinear PID control design for improving stability of micro-turbine systems. In: Electric Utility Deregulation and Restructuring and Power Technologies, pp. 2515–2518 (2008)

    Google Scholar 

  3. Jiayi, H., Chuanwen, J., Rong, X.: A review on distributed energy resources and MicroGrid. Renew. Sustain Energy Rev. 12, 2472–2483 (2008)

    Article  Google Scholar 

  4. Khorshidi, A., Zolfaghari, M., Hejazi, M.A.: Dynamic modeling and simulation of microturbine generating system for stability analysis in microgrid networks. Int. J. Basic Sci. Appl. Res. 3(9), 663–670 (2014)

    Google Scholar 

  5. Yu, T., Tong, J.P.: Auto disturbance rejection control of microturbine system. In: IEEE Power Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century (2008)

    Google Scholar 

  6. Li, Z., Wang, D.H., Xue, Y.L.: Research on ways of modeling of microturbine (part 1): analysis of dynamic characteristic. Chin. J. Power Eng. 25, 13–17 (2005)

    Google Scholar 

  7. Lasseter R.: Dynamic models for micro-turbines and fuel cells. In: Power Engineering Society Summer Meeting, pp. 761–766 (2001)

    Google Scholar 

  8. Rowen, W.J.: Simplified mathematical representation of heavy duty gas turbines. ASME J. Eng. Power 105, 865–869 (1983)

    Article  Google Scholar 

  9. Nguyen, H., Prasad, N., Walker, C., Walker, E.: A First Course in Fuzzy and Neural Control. Chapman & Hall/CRC, Boca Raton (2003)

    MATH  Google Scholar 

  10. Jurado, F.: Modeling micro-turbines using Hammerstein models. Int. J. Energy Res. 29, 841–85 (2005)

    Article  Google Scholar 

  11. Guda, S., Wang, C., Nehrir, M.: Modeling of microturbine power generation systems. Electr. Power Compon. Syst. 34(9), 1027–1041 (2006)

    Article  Google Scholar 

  12. Wanik, M., Erlich, I.: Dynamic simulation of microturbine distributed generators integrated with multi-machines power system network. In: 2nd IEEE International Conference on Power and Energy, PECon 2008 (2008)

    Google Scholar 

  13. Chen, J., Wu, H., Sun, M., Jiang, W., Cai, L., Guo, C.: Modeling and simulation of directly driven wind turbine with permanent magnet synchronous generator. In: IEEE Innovative Smart Grid Technologies-Asia (ISGT Asia) (2012)

    Google Scholar 

  14. Rolan, A., Luna, A., Gerardo, V., Aguilar, D., Azevedo, G.: Modelling of a variable speed wind turbine with a permanent magnet synchronous generator. In: IEEE International Symposium on Industrial Electronics (ISIE), pp. 734–739, 5–8 July 2009

    Google Scholar 

  15. Patil, K., Mehta, B.: Modeling and control of variable speed wind turbine with permanent magnet synchronous generator. In: International Conference on Advances in Green Energy (ICAGE), pp. 17–18 (2014)

    Google Scholar 

  16. Espitia, H., Díaz, G.: Identification of a permanent magnet synchronous generator using neuronal networks. In: Workshop on Engineering Applications - International Congress on Engineering (WEA) (2015)

    Google Scholar 

  17. Espitia, H., Díaz, G., Díaz, S.: Control of a permanent magnet synchronous generator using a neuro-fuzzy system. In: Figueroa-García, J.C., López-Santana, E.R., Rodriguez-Molano, J.I. (eds.) WEA 2018. CCIS, vol. 915, pp. 89–101. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00350-0_8

    Chapter  Google Scholar 

  18. Torres, N., Hernandez, C., Pedraza, L.: Redes neuronales y predicción de tráfico. Revista Tecnura 15(29), 90–97 (2011)

    Google Scholar 

  19. Martinez, F., Gómez, D., Castiblanco, M.: Optimization of a neural architecture for the direct control of a Boost converter. Revista Tecnura 16(32), 41–49 (2012)

    Article  Google Scholar 

  20. Pérez, F., Fernández, H.: Las redes neuronales y la evaluación del riesgo de crédito. Revista Ingenierpias Universidad de Medellín 6(10), 77–91 (2007)

    Google Scholar 

  21. Arrieta, J., Torres, J., Velásquez, H.: Predicciones de modelos econométricos y redes neuronales: el caso de la acción de SURAMINV. Semestre Económico 12(25), 95–109 (2009)

    Google Scholar 

  22. Heaton, J.: Introduction to Neural Networks with Java, pp. 41–49. Heaton Research Inc., St. Louis (2008)

    Google Scholar 

  23. Hagan, M., De Jesús, O., Schultz, R.: Training recurrent networks for filtering and control. In: Medsker, L.R., Jain, L.C. (eds.) Recurrent Neural Networks: Design and Applications, pp. 325–354. CRC Press, Boca Raton (2000)

    Google Scholar 

  24. De Jesús, O., Hagan, M.T.: Backpropagation algorithms for a broad class of dynamic networks. IEEE Trans. Neural Netw. 18(1), 14–27 (2007)

    Article  Google Scholar 

  25. Garrido, S.: Identificación, estimación y control de sistemas no-lineales mediante RGO. Tesis para optar al título de Doctor, Departamento de Ingeniería de Sistemas y Automática, Universidad Carlos III, Madrid, España (1999)

    Google Scholar 

  26. Singh, M., Singh, I., Verma, A.: Identification on non linear series-parallel model using neural network. MIT Int. J. Electr. Instrum. Eng. 3(1), 21–23 (2013)

    Google Scholar 

  27. Li, Y., Zhao, X., Jiao, L.: A nonlinear system identification approach based on neurofuzzy networks. In: Proceedings of ICSP (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helbert Espitia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Espitia, H., Machón, I., López, H. (2019). Control of a Microturbine Using Neural Networks. In: Figueroa-García, J., Duarte-González, M., Jaramillo-Isaza, S., Orjuela-Cañon, A., Díaz-Gutierrez, Y. (eds) Applied Computer Sciences in Engineering. WEA 2019. Communications in Computer and Information Science, vol 1052. Springer, Cham. https://doi.org/10.1007/978-3-030-31019-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31019-6_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31018-9

  • Online ISBN: 978-3-030-31019-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics