Skip to main content

A New Approach to Improve Learning in Fuzzy Cognitive Maps Using Reinforcement Learning

  • Conference paper
  • First Online:
Applied Computer Sciences in Engineering (WEA 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1052))

Included in the following conference series:

  • 1244 Accesses

Abstract

Fuzzy Cognitive Maps (FCM) are dedicated to modeling complex dynamic systems and has been widely studied. One of those studies probed that Computing with Words (CWW) is very effective to improve the interpretability and transparency of FCM. Learning methods to calculate the weight matrix in a map are the target of hundreds of studies in various parts of the world. These methods allow the map to learn or evolve towards a better state, but always taking into account that the output must be evaluated and compared using a real scenario. Reinforcement Learning has, within its performance, one of the possible answers to this problem, aimed at improving the classification capacity of the map and thus improving the learning of its weights. This paper presents a new learning method for Fuzzy Cognitive Maps. The proposal was evaluated using international databases and the experimental results show a satisfactory performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alcala, J., Fernandez, A.: Keel data-mining software tool: data set repository, integration of algorithms and experimental analysis framework. J. Mult. Valued Logic Soft Comput. 17, 255–287 (2010)

    Google Scholar 

  2. Asuncion, A., Newman, D.: Uci machine learning repository. A study of the behaviour of several methods for balancing machine learning training data. SIGKDD Explor. 6, 20–29 (2007)

    Google Scholar 

  3. Axelrod, R.: Structure of Decision: The Cognitive Maps of Political Elites. Princeton University Press, Princeton (1976)

    Google Scholar 

  4. Chen, Y., Mazlack, L., Lu, L.: Learning fuzzy cognitive maps from data by ant colony optimization. In: Genetic and Evolutionary Computation Conference (2012)

    Google Scholar 

  5. Delgado, M., Verdegay, J.L., Vila, M.A.: On aggregation operations of linguistic labels. Int. J. Intell. Syst. 8, 351–370 (1993)

    Article  Google Scholar 

  6. Demsar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)

    MathSciNet  MATH  Google Scholar 

  7. Dickerson, J.A., Kosko, B.: Virtual worlds as fuzzy cognitive maps. Presence 3, 173–189 (1994)

    Article  Google Scholar 

  8. Dubois, D., Prade, H.: Fuzzy Sets and Systems: Theory and Applications. Academic Press, New York (1980)

    MATH  Google Scholar 

  9. Filiberto, Y., Bello, R., Nowe, A.: A new method for personnel selection based on ranking aggregation using a reinforcement learning approach. Computación y Sistemas 22(2) (2018)

    Google Scholar 

  10. Frias, M., Filiberto, Y., Nápoles, G., García-Socarrás, Y., Vanhoof, K., Bello, R.: Fuzzy cognitive maps reasoning with words based on triangular fuzzy numbers. In: Castro, F., Miranda-Jiménez, S., González-Mendoza, M. (eds.) Advances in Soft Computing, pp. 197–207. Springer International Publishing, Cham (2018)

    Chapter  Google Scholar 

  11. Garcia, S.: Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power. Inf. Sci. 180, 2044–2064 (2010)

    Article  Google Scholar 

  12. García, S., Herrera, F.: Evolutionary under-sampling for classification with imbalanced data sets: proposals and taxonomy. Evol. Comput. 17, 275–306 (2009)

    Article  Google Scholar 

  13. Herrera, F., García, S.: An extensionon statistical comparisons of classifiers ovemultiple data setsfor all pairwise comparisons. J. Mach. Learn. Res. 9, 2677–2694 (2008)

    MATH  Google Scholar 

  14. Herrera, F., Martínez, L.: A 2-tuple fuzzy linguistic representation model for computing with words. IEEE Trans. Fuzzy Syst. 8(6), 746–752 (2000)

    Article  Google Scholar 

  15. Holm, S.: A simple sequentially rejective multiple test procedure. J. Stat. 6, 65–70 (1979)

    MathSciNet  MATH  Google Scholar 

  16. Huerga, A.V.: A balanced differential learning algorithm in fuzzy cognitive maps. In: 16th International Workshop on Qualitative Reasoning (2002)

    Google Scholar 

  17. Iman, R., Davenport, J.: Approximations of the critical region of the Friedman statistic. Commun. Stat. Part A Theory Methods 9, 571–595 (1980)

    Article  Google Scholar 

  18. Kosko, B.: Fuzzy cognitive maps. Int. J. Approximate Reasoning 2, 377–393 (1984)

    Article  Google Scholar 

  19. Koulouriotis, D.E., Diakoulakis, I.E., Emiris, D.M.: Learning fuzzy cognitive maps using evolution strategies: a novel schema for modeling and simulating high-level behavior. IEEE Congress on Evolutionary Computation pp. 364-371 (2001)

    Google Scholar 

  20. Nápoles, G.: Algoritmo para mejorar la convergencia en Mapas Cognitivos Difusos Sigmoidales. Master’s thesis, Universidad Central “Marta Abreu” de las Villas (2014)

    Google Scholar 

  21. Narendra, K., Thathachar, M.: Learning Automata: An Introduction. Prentice-Hall, Upper Saddle River (1989)

    Google Scholar 

  22. Papageorgiou, E.I.: Learning algorithms for fuzzy cognitive maps - a review study. IEEETrans. Syst. Man Cybern. B Cybern. 42, 150–163 (2012)

    Article  Google Scholar 

  23. Parsopoulos, K.E., Papageorgiou, E.I., Groumpos, P.P., Vrahatis, M.N.: A first study of fuzzy cognitive maps learning using particle swarm optimization. In: IEEE Congress on Evolutionary Computation, pp. 1440–1447 (2003)

    Google Scholar 

  24. Sheskin, D.: Handbook of Parametric and Nonparametric Statistical Procedures. Chapman & hall, Boca Raton (2003)

    Book  Google Scholar 

  25. Stach, W., Kurgan, L., Pedrycz, W., Reformat, M.: Genetic learning of fuzzy cognitive maps. Fuzzy Sets Syst. 153, 371–401 (2005)

    Article  MathSciNet  Google Scholar 

  26. Sutton, R.S., Barto, A.: Reinforcement Learning: An Introduction, 2nd edn. The MIT Press, London (2017)

    MATH  Google Scholar 

  27. Thathachar, M., Sastry, P.: Networks of Learning Automata: Techniques for Online Stochastic Optimization. Kluwer Academic Publishers, Dordrecht (2004)

    Book  Google Scholar 

  28. Wauters, T., Verbeeck, K., De Causmaecker, P., Vanden Berghe, G.: Fast permutation learning. In: Hamadi, Y., Schoenauer, M. (eds.) LION 2012. LNCS, pp. 292–306. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34413-8_21

    Chapter  MATH  Google Scholar 

  29. Zadeh, L.A.: Outline of a new approach to the analysis of complex systems ad decision processes. IEEE Trans. Syst. Man Cybern. B Cybern. 3(1), 28–44 (1973)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Balmaseda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Balmaseda, F., Filiberto, Y., Frias, M., Bello, R. (2019). A New Approach to Improve Learning in Fuzzy Cognitive Maps Using Reinforcement Learning. In: Figueroa-García, J., Duarte-González, M., Jaramillo-Isaza, S., Orjuela-Cañon, A., Díaz-Gutierrez, Y. (eds) Applied Computer Sciences in Engineering. WEA 2019. Communications in Computer and Information Science, vol 1052. Springer, Cham. https://doi.org/10.1007/978-3-030-31019-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31019-6_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31018-9

  • Online ISBN: 978-3-030-31019-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics