Skip to main content

Multi-time Source Selection Optimization Algorithm for Time Synchronization System

  • Conference paper
  • First Online:
Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2019 (AISI 2019)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1058))

  • 2277 Accesses

Abstract

The optimal time source can provide accurate, stable and continuous time signal output for the time synchronization system, and ensure the power system to operate under a reliable time reference. Aiming at the problem that single time source in substation cannot meet the reliability requirement of system operation on time synchronization, this paper proposes an optimization algorithm of time source selection under the condition of multiple time signal sources input. Firstly, the validity of the time source signal is tested to determine whether the time signal is valid. The priority test is carried out for the effective time source from the aspects of time signal persistence and stability. Finally, the optimal time source is determined by the weighted synthesis method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shkarbalyuk, M.E., Pil’gave, S.V., Larchenko, A.V.: An emulator of the GPS receiver as an exact-time source. Instrum. Exp. Tech. 54, 249–253 (2011)

    Google Scholar 

  2. Von, A.: EOF: the universal internet time source. Linux J. 138, 13 (2005)

    Google Scholar 

  3. Zhao, W., Ren, X.: Time synchronization with IRIG-B code in intelligent electronic devices. Autom. Electric Power Syst. 34, 113–115 (2010)

    Google Scholar 

  4. Littlestone, N., Warmuth, M.K.: The weighted majority algorithm. In: Proceedings of the Second Annual Workshop on Computational Learning Theory, vol. 108(2), p. 388 (1989)

    Google Scholar 

  5. Ma, H.J., Huang, F.J., Zhang, B.: The time synchronization analytical study of the dynamical multi-agent. Appl. Mech. Mater. 198, 1417–1421 (2012)

    Google Scholar 

  6. Johannessen, S.: Time synchronization in a local area network. IEEE Control Syst. Mag. 24, 61–69 (2004)

    Google Scholar 

  7. Tian, Y.P.: Time synchronization in WSNs with random bounded communication delays. IEEE Trans. Autom. Control 99, 1–7 (2017)

    MathSciNet  MATH  Google Scholar 

  8. Huang, X., Jiang, D.Z.: A high accuracy time keeping scheme based on GPS. Autom. Electric Power Syst. (2010)

    Google Scholar 

  9. Ferrari, P., Flammini, A., Rinaldi, S.: Evaluation of time gateways for synchronization of substation automation systems. IEEE Trans. Instrum. Meas. 61(10), 2612–2621 (2012)

    Article  Google Scholar 

  10. Khmou, Y., Safi, S.: A study of 1D quadratic map. Int. J. Adv. Sci. Technol. 121, 21–30 (2018)

    Google Scholar 

  11. Zhu, X.S., Ma, W.L.: A design of aircraft grid harmonic detection device using DSP and ARM. Int. J. Control Autom. 8(3), 97–98 (2015)

    Google Scholar 

  12. Pusuluri, R., Aggarwal, R., Sivachandar.: Simulation study of feedback based adaptive TCP protocol for improving the performance of TCP and high speed data transmission based on congestion window size. Int. J.Grid Distrib. Comput. 11(1), 1–12 (2018)

    Google Scholar 

  13. Khan, S.A., Khan, F.H., Qazi, F., Agha, D., Das, B.: Secure identity-based cryptographic approach for vehicular ah-hoc networks. Int. J. Secur. Appl. 12(1), 59–68 (2018)

    Google Scholar 

  14. Alkhoder, A., Assimi, A., Alhariri, M.: Adaptive retransmission protocol based on mutual information. Int. J. Future Gener. Commun. Netw. 11(2), 49–70 (2018)

    Google Scholar 

  15. Koteswara Rao Devana, V.N.: A novel UWB monopole antenna with defected ground structure. Int. J. Sig. Process.: Image Process. Pattern Recogn. 10(1), 89–98 (2017)

    Google Scholar 

  16. Azam, A., Shafique, M.: An overview of fruits and vegetables trade of China. Int. J. u - and e – Serv. Sci. Technol. 11(1), 33–44 (2018)

    Article  Google Scholar 

  17. Kim, H.G.: SQL-to-MapReduce translation for efficient OLAP query processing with MapReduce. Int. J. Database Theor. Appl. 10(6), 61–70 (2017)

    Article  Google Scholar 

  18. Le, T., Le, C., Jeong, H.D., Jahren, C.: Visual exploration of large transportation asset data using ontology-based heat tree. Int. J. Transp. 6(1), 47–58 (2018)

    Article  Google Scholar 

  19. Guha, S., Dey, A.: Study on morphological changes in and around nayachara tail using remote sensing techniques. Int. J. Disaster Recovery Bus. Continuity 7, 13–26 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meijie Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, M., Wang, G., Wei, K., Gang, H., Wang, H. (2020). Multi-time Source Selection Optimization Algorithm for Time Synchronization System. In: Hassanien, A., Shaalan, K., Tolba, M. (eds) Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2019. AISI 2019. Advances in Intelligent Systems and Computing, vol 1058. Springer, Cham. https://doi.org/10.1007/978-3-030-31129-2_16

Download citation

Publish with us

Policies and ethics