Skip to main content

Rough Sets Based on Possibly Indiscernible Classes in Incomplete Information Tables with Continuous Values

  • Conference paper
  • First Online:
Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2019 (AISI 2019)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1058))

Abstract

Rough sets under incomplete information with continuous domains are examined based on possible world semantics. We focus on possible indiscernibility relations, although the traditional approaches are done under possible tables. This is because we only obtain a finite number of possible indiscernibility relations even if infinite number of possible tables are derived from an incomplete information table. A possibly indiscernible class for an object is derived from a possible indiscernibility relation. The family of possibly indiscernible classes for the object is a lattice for inclusion. Lower and upper approximations are derived from using the minimal and the maximal elements in the lattice. Therefore, there is no computational complexity for the number of objects with incomplete information. Furthermore, the approach based on possible world semantics gives the same approximations as ones obtained from our extended approach, which is proposed in the previous work using indiscernible classes. Therefore, the approach developed in this paper justifies our extended approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    When threshold \(\delta \) requires to denote, \(R_{a_{i}}^{\delta }\) is used.

  2. 2.

    \(\delta _{a_{i}}\) is expressed by \(\delta \) omitting \(a_{i}\) for simplicity if no confusion.

  3. 3.

    When threshold \(\delta \) requires to denote, \([o]_{a_{i}}^{\delta }\) is used.

  4. 4.

    For the sake of simplicity and space limitation, We describe the case of an attribute, although our approach can be easily extended to the case of more than one attribute.

References

  1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley Publishing Company, Boston (1995)

    MATH  Google Scholar 

  2. Grahne, G.: The Problem of Incomplete Information in Relational Databases. Lecture Notes in Computer Science, vol. 554. Springer, Heidelberg (1991)

    Book  Google Scholar 

  3. Grzymala-Busse, J.W.: Mining numerical data a rough set approach. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets XI. LNCS, vol. 5946, pp. 1–13. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11479-3_1

    Chapter  Google Scholar 

  4. Imielinski, T., Lipski, W.: Incomplete information in relational databases. J. ACM 31, 761–791 (1984)

    Article  MathSciNet  Google Scholar 

  5. Jing, S., She, K., Ali, S.: A universal neighborhood rough sets model for knowledge discovering from incomplete heterogeneous data. Expert Syst. 30(1), 89–96 (2013). https://doi.org/10.1111/j.1468-0394.2012.00633_x

    Article  Google Scholar 

  6. Kryszkiewicz, M.: Rules in incomplete information systems. Inf. Sci. 113, 271–292 (1999)

    Article  MathSciNet  Google Scholar 

  7. Lipski, W.: On semantics issues connected with incomplete information databases. ACM Trans. Database Syst. 4, 262–296 (1979)

    Article  Google Scholar 

  8. Lin, T.Y.: Neighborhood systems: a qualitative theory for fuzzy and rough sets. In: Wang, P. (ed.) Advances in Machine Intelligence and Soft Computing, vol. IV, pp. 132–155. Duke University, Durham (1997)

    Google Scholar 

  9. Nakata, M., Sakai, H.: Applying rough sets to information tables containing missing values. In: Proceedings of 39th International Symposium on Multiple-Valued Logic, pp. 286–291. IEEE Press (2009). https://doi.org/10.1109/ISMVL.2009.1

  10. Nakata, M., Sakai, H.: Twofold rough approximations under incomplete information. Int. J. Gen. Syst. 42, 546–571 (2013). https://doi.org/10.1080/17451000.2013.798898

    Article  MathSciNet  MATH  Google Scholar 

  11. Nakata, M., Sakai, H.: Describing rough approximations by indiscernibility relations in information tables with incomplete information. In: Carvalho, J.P., Lesot, M.-J., Kaymak, U., Vieira, S., Bouchon-Meunier, B., Yager, R.R. (eds.) IPMU 2016, Part II. CCIS, vol. 611, pp. 355–366. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40581-0_29

    Chapter  Google Scholar 

  12. Nakata, M., Sakai, H., Hara, K.: Rules induced from rough sets in information tables with continuous values. In: Medina, J., Ojeda-Aciego, M., Verdegay, J.L., Pelta, D.A., Cabrera, I.P., Bouchon-Meunier, B., Yager, R.R. (eds.) IPMU 2018, Part II. CCIS, vol. 854, pp. 490–502. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91476-3_41

    Chapter  Google Scholar 

  13. Nakata, M., Sakai, H., Hara, K.: Rule induction based on indiscernible classes from rough sets in information tables with continuous values. In: Nguyen, H.S., et al. (eds.) IJCRS 2018. LNAI, vol. 11103, pp. 323–336. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-319-99368-3_25

    Chapter  Google Scholar 

  14. Paredaens, J., De Bra, P., Gyssens, M., Van Gucht, D.: The Structure of the Relational Database Model. Springer, Heidelberg (1989)

    Book  Google Scholar 

  15. Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Dordrecht (1991). https://doi.org/10.1007/978-94-011-3534-4

    Book  MATH  Google Scholar 

  16. Skowron, A., Stepaniuk, J.: Tolerance approximation spaces. Fundam. Inform. 27, 245–253 (1996)

    MathSciNet  MATH  Google Scholar 

  17. Stefanowski, J., Tsoukiàs, A.: Incomplete information tables and rough classification. Comput. Intell. 17, 545–566 (2001)

    Article  Google Scholar 

  18. Yang, X., Zhang, M., Dou, H., Yang, Y.: Neighborhood systems-based rough sets in incomplete information system. Inf. Sci. 24, 858–867 (2011). https://doi.org/10.1016/j.knosys.2011.03.007

    Article  Google Scholar 

  19. Zenga, A., Lia, T., Liuc, D., Zhanga, J., Chena, H.: A fuzzy rough set approach for incremental feature selection on hybrid information systems. Fuzzy Sets Syst. 258, 39–60 (2015). https://doi.org/10.1016/j.fss.2014.08.014

    Article  MathSciNet  Google Scholar 

  20. Zhao, B., Chen, X., Zeng, Q.: Incomplete hybrid attributes reduction based on neighborhood granulation and approximation. In: 2009 International Conference on Mechatronics and Automation, pp. 2066–2071. IEEE Press (2009)

    Google Scholar 

  21. Zimányi, E., Pirotte, A.: Imperfect information in relational databases. In: Motro, A., Smets, P. (eds.) Uncertainty Management in Information Systems: From Needs to Solutions, pp. 35–87. Kluwer Academic Publishers, Dordrecht (1997)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michinori Nakata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nakata, M., Sakai, H., Hara, K. (2020). Rough Sets Based on Possibly Indiscernible Classes in Incomplete Information Tables with Continuous Values. In: Hassanien, A., Shaalan, K., Tolba, M. (eds) Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2019. AISI 2019. Advances in Intelligent Systems and Computing, vol 1058. Springer, Cham. https://doi.org/10.1007/978-3-030-31129-2_2

Download citation

Publish with us

Policies and ethics