Skip to main content

Implementation of PID Controller with PSO Tuning for Autonomous Vehicle

  • Conference paper
  • First Online:
Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2019 (AISI 2019)

Abstract

In the use of automatic control and its optimization methods, this research discusses how Proportional Integral Derivative (PID) controller is used to provide a smooth auto-parking for an electrical autonomous car. Different tuning methods are shown, discussed, and applied to the system looking forward to enhancing its performance. Time domain specifications are used as a criterion of comparison between tuning methods in order to select the best tuning method to the system with a proper cost function. Results show that Particle Swarm Optimization (PSO) method gives the best results according the criteria of comparison.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ammar, H.H., Azar, A.T.: Robust path tracking of mobile robot using fractional order PID controller. In: Hassanien, A.E., Azar, A.T., Gaber, T., Bhatnagar, R., F. Tolba, M. (eds.) The International Conference on Advanced Machine Learning Technologies and Applications (AMLTA 2019), pp. 370–381. Springer, Cham (2020)

    Google Scholar 

  2. Ammar, H.H., Azar, A.T., Tembi, T.D., Tony, K., Sosa, A.: Design and implementation of fuzzy pid controller into multi agent smart library system prototype. In: Hassanien, A.E., Tolba, M.F., Elhoseny, M., Mostafa, M. (eds.) The International Conference on Advanced Machine Learning Technologies and Applications (AMLTA2018), pp. 127–137. Springer, Cham (2018)

    Chapter  Google Scholar 

  3. Azar, A.T., Serrano, F.E.: Robust IMC–PID tuning for cascade control systems with gain and phase margin specifications. Neural Comput. Appl. 25(5), 983–995 (2014). https://doi.org/10.1007/s00521-014-1560-x

    Article  Google Scholar 

  4. Azar, A.T., Serrano, F.E.: Design and Modeling of Anti Wind Up PID Controllers, pp. 1–44. Springer, Cham (2015)

    Google Scholar 

  5. Azar, A.T., Serrano, F.E.: Fractional order sliding mode PID controller/observer for continuous nonlinear switched systems with PSO parameter tuning. In: The International Conference on Advanced Machine Learning Technologies and Applications (AMLTA 2018), pp. 13–22. Springer (2018). https://doi.org/10.1007/978-3-319-74690-62

  6. Azar, A.T., Serrano, F.E.: Fractional order sliding mode PID controller/observer for continuous nonlinear switched systems with PSO parameter tuning. In: Hassanien, A.E., Tolba, M.F., Elhoseny, M., Mostafa, M. (eds.) The International Conference on Advanced Machine Learning Technologies and Applications (AMLTA 2018), pp. 13–22. Springer, Cham (2018)

    Chapter  Google Scholar 

  7. Azar, A.T., Vaidyanathan, S.: Handboook of Research on Advanced Intelligent Control Engineering and Automation. IGI Global, New York (2015)

    Book  Google Scholar 

  8. Azar, A.T., Serrano, F.E., Vaidyanathan, S.: Proportional integral loop shaping control design with particle swarm optimization tuning. In: Advances in System Dynamics and Control, pp. 24–57. IGI Global (2018). https://doi.org/10.4018/978-1-5225-4077-9.ch002

  9. Bimbraw, K.: Autonomous cars: Past, present and future a review of the developments in the last century, the present scenario and the expected future of autonomous vehicle technology. In: 2015 12th International Conference on Informatics in Control, Automation and Robotics (ICINCO), vol. 01, pp. 191–198 (2015)

    Google Scholar 

  10. Eberhart, R., Shi, Y., Kennedy, J.: Swarm Intelligence. Elsevier, Amsterdam (2001)

    Google Scholar 

  11. Gerla, M., Lee, E.K., Pau, G., Lee, U.: Internet of vehicles: from intelligent grid to autonomous cars and vehicular clouds. In: 2014 IEEE World Forum on Internet of Things (WF-IoT). IEEE (2014). https://doi.org/10.1109/wf-iot.2014.6803166

  12. Gorripotu, T.S., Samalla, H., Jagan Mohana Rao, C., Azar, A.T., Pelusi, D.: TLBO algorithm optimized fractional-order pid controller for AGC of interconnected power system. In: Nayak, J., Abraham, A., Krishna, B.M., Chandra Sekhar, G.T., Das, A.K. (eds.) Soft Computing in Data Analytics, pp. 847–855. Springer, Singapore (2019)

    Chapter  Google Scholar 

  13. Hussain, K.M., Zepherin, R.A.R., Kumar, M.S.: Comparison of tuning methods of PID controllers for FOPTD system. IJIREEICE 2(3), 1177–1180 (2014)

    Google Scholar 

  14. Joseph EAAMCR: Cohen-coon PID tuning method: A better option to ziegler nichols-pid tuning method. Computer Engineering and Intelligent Systems (2018)

    Google Scholar 

  15. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN 1995 - International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)

    Google Scholar 

  16. Maiti, D., Acharya, A., Chakraborty, M., Konar, A., Janarthanan, R.: Tuning PID and \(pi^\lambda d^\mu \) controllers using the integral time absolute error criterion. In: 2008 4th International Conference on Information and Automation for Sustainability. IEEE (2008). https://doi.org/10.1109/iciafs.2008.4783932

  17. Ogata, K.: Modern Control Engineering. Prentice Hall, Upper Saddle River (2010)

    Google Scholar 

  18. Shahrokhi, M., Zomorrodi, A.: Comparison of PID controller tuning methods. Department of Chemical & Petroleum Engineering Sharif University of Technology, pp. 1–2 (2013)

    Google Scholar 

  19. Soliman, M., Azar, A.T., Saleh, M.A., Ammar, H.H.: Path planning control for 3-OMNI fighting robot using PID and fuzzy logic controller. In: Hassanien, A.E., Azar, A.T., Gaber, T., Bhatnagar, R., F Tolba, M. (eds.) The International Conference on Advanced Machine Learning Technologies and Applications (AMLTA 2019), pp. 442–452. Springer, Cham (2020)

    Google Scholar 

  20. Stone, R., Ball, J.K.: Automotive Engineering Fundamentals. SAE International (2004)

    Google Scholar 

  21. Sukthankar, R.: Raccoon: a real-time autonomous car chaser operating optimally at night. In: Proceedings of the Intelligent Vehicles ’93 Symposium, pp. 37–42 (1993). https://doi.org/10.1109/IVS.1993.697294

  22. Tseng, Y., Jan, S.: Combination of computer vision detection and segmentation for autonomous driving. In: 2018 IEEE/ION Position, Location and Navigation Symposium (PLANS), pp. 1047–1052 (2018). https://doi.org/10.1109/PLANS.2018.8373485

  23. Xu, W., Yan, C., Jia, W., Ji, X., Liu, J.: Analyzing and enhancing the security of ultrasonic sensors for autonomous vehicles. IEEE Internet Things J. 5(6), 5015–5029 (2018). https://doi.org/10.1109/jiot.2018.2867917

    Article  Google Scholar 

  24. Ziegler, J., Nichols, N.B.: Optimum settings for automatic controllers. Trans. ASME 64(8), 759768 (1942)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Taher Azar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Azar, A.T., Ammar, H.H., Ibrahim, Z.F., Ibrahim, H.A., Mohamed, N.A., Taha, M.A. (2020). Implementation of PID Controller with PSO Tuning for Autonomous Vehicle. In: Hassanien, A., Shaalan, K., Tolba, M. (eds) Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2019. AISI 2019. Advances in Intelligent Systems and Computing, vol 1058. Springer, Cham. https://doi.org/10.1007/978-3-030-31129-2_27

Download citation

Publish with us

Policies and ethics