Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11760))

Abstract

We analyse two translations from the synchronous into the asynchronous \(\pi \)-calculus, both without choice, that are often quoted as standard examples of valid encodings, showing that the asynchronous \(\pi \)-calculus is just as expressive as the synchronous one. We examine which of the quality criteria for encodings from the literature support the validity of these translations. Moreover, we prove their validity according to much stronger criteria than considered previously in the literature.

This work was partially supported by the DFG (German Research Foundation).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    As observed by a referee, the encodings and do not satisfy this constraint: the continuation process P can proceed before z is received. This issue could be alleviated by enriching the protocol with another communication from \(Q'\) to \(P'\).

  2. 2.

    Gorla defines the latter concept only for languages that are equipped with a notion of structural congruence \(\equiv \) as well as a parallel composition |. In that case P has a top-level unguarded occurrence of \(\surd \) iff \(P\equiv Q|\surd \), for some Q [22]. Specialised to the \(\pi \)-calculus, a (top-level) unguarded occurrence is one that not lies strictly within a subterm \(\alpha .Q\), where \(\alpha \) is \(\tau \), \(\bar{x}y\) or x(z). For De Simone languages [42], even when not equipped with \(\equiv \) and |, a suitable notion of an unguarded occurrence is defined in [43].

References

  1. Amadio, R.M., Castellani, I., Sangiorgi, D.: On bisimulations for the asynchronous pi-calculus. Theoret. Comput. Sci. 195(2), 291–324 (1998). https://doi.org/10.1016/S0304-3975(97)00223-5

    Article  MathSciNet  MATH  Google Scholar 

  2. Baldamus, M., Parrow, J., Victor, B.: A fully abstract encoding of the \({\pi }\)-calculus with data terms. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1202–1213. Springer, Heidelberg (2005). https://doi.org/10.1007/11523468_97

    Chapter  Google Scholar 

  3. Beauxis, R., Palamidessi, C., Valencia, F.D.: On the asynchronous nature of the asynchronous \(\pi \)-calculus. In: Degano, P., De Nicola, R., Meseguer, J. (eds.) Concurrency, Graphs and Models. LNCS, vol. 5065, pp. 473–492. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68679-8_29

    Chapter  Google Scholar 

  4. Boudol, G.: Notes on algebraic calculi of processes. In: Apt, K.R. (eds) Logics and Models of Concurrent Systems. NATO ASI Series (Series F: Computer and Systems Sciences), vol. 13, pp. 261–303. Springer, Heidelberg (1985). https://doi.org/10.1007/978-3-642-82453-1_9

    Chapter  Google Scholar 

  5. Boudol, G.: Asynchrony and the \(\pi \)-calculus (Note). Technical Report, 1702, INRIA (1992)

    Google Scholar 

  6. Brinksma, E., Rensink, A., Vogler, W.: Fair testing. In: Lee, I., Smolka, S.A. (eds.) CONCUR 1995. LNCS, vol. 962, pp. 313–327. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60218-6_23

    Chapter  Google Scholar 

  7. Cacciagrano, D., Corradini, F.: On synchronous and asynchronous communication paradigms. ICTCS 2001. LNCS, vol. 2202, pp. 256–268. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45446-2_16

    Chapter  Google Scholar 

  8. Cacciagrano, D., Corradini, F., Palamidessi, C.: Separation of synchronous and asynchronous communication via testing. Theoret. Comput. Sci. 386(3), 218–235 (2007). https://doi.org/10.1016/j.tcs.2007.07.009

    Article  MathSciNet  MATH  Google Scholar 

  9. De Nicola, R., Hennessy, M.: Testing equivalences for processes. Theoret. Comput. Sci. 34, 83–133 (1984). https://doi.org/10.1016/0304-3975(84)90113-0

    Article  MathSciNet  MATH  Google Scholar 

  10. Du, W., Yang, Z., Zhu, H.: A fully abstract encoding for sub asynchronous Pi calculus. In: Pang, J., Zhang, C., He, J., Weng, J. (eds.) Proceedings of TASE 2018, pp. 17–27. IEEE Computer Society Press (2018). https://doi.org/10.1109/TASE.2018.00011

  11. Fu, Y.: Theory of interaction. Theoret. Comput. Sci. 611, 1–49 (2016). https://doi.org/10.1016/j.tcs.2015.07.043

    Article  MathSciNet  MATH  Google Scholar 

  12. Given-Wilson, T.: Expressiveness via intensionality and concurrency. In: Ciobanu, G., Méry, D. (eds.) ICTAC 2014. LNCS, vol. 8687, pp. 206–223. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10882-7_13

    Chapter  Google Scholar 

  13. Given-Wilson, T.: On the expressiveness of intensional communication. In: Borgström, J., Crafa, S. (eds.) Proceedings EXPRESS/SOS 2014. EPTCS, vol. 160, pp. 30–46 (2014). https://doi.org/10.4204/EPTCS.160.4

    Article  MathSciNet  Google Scholar 

  14. Given-Wilson, T., Legay, A.: On the expressiveness of joining. In: Knight, S., Lanese, I., Lluch Lafuente, A., Torres Vieira, H. (eds.) Proceedings of ICE2015. EPTCS, vol. 189, pp. 99–113 (2015). https://doi.org/10.4204/EPTCS.189.9

    Article  MathSciNet  Google Scholar 

  15. Given-Wilson, T., Legay, A.: On the expressiveness of symmetric communication. In: Sampaio, A., Wang, F. (eds.) ICTAC 2016. LNCS, vol. 9965, pp. 139–157. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46750-4_9

    Chapter  MATH  Google Scholar 

  16. van Glabbeek, R.J.: On the expressiveness of ACP. In: Ponse, A., Verhoef, C., van Vlijmen, S.F.M. (eds.) Algebra of Communicating Processes. Workshops in Computing, pp. 188–217. Springer, London (1995), https://doi.org/10.1007/978-1-4471-2120-6_8

    Google Scholar 

  17. van Glabbeek, R.J.: Musings on encodings and expressiveness. In: Luttik, B., Reniers, M.A. (eds.) Proceedings EXPRESS/SOS 2012. EPTCS, vol. 89, pp. 81–98 (2012). https://doi.org/10.4204/EPTCS.89.7

    Article  Google Scholar 

  18. van Glabbeek, R.J.: On the validity of encodings of the synchronous in the asynchronous \(\pi \)-calculus. Inf. Process. Lett. 137, 17–25 (2018). https://doi.org/10.1016/j.ipl.2018.04.015. https://arxiv.org/abs/1802.09182

    Article  MathSciNet  Google Scholar 

  19. van Glabbeek, R.J.: A Theory of Encodings and Expressiveness. Technical Report, Data61, CSIRO (2018). https://arxiv.org/abs/1805.10415. Full version of [20]

  20. van Glabbeek, R.J.: A theory of encodings and expressiveness (extended abstract). In: Baier, C., Dal Lago, U. (eds.) FoSSaCS 2018. LNCS, vol. 10803, pp. 183–202. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89366-2_10

    Chapter  MATH  Google Scholar 

  21. Gorla, D.: A taxonomy of process calculi for distribution and mobility. Distrib. Comput. 23(4), 273–299 (2010). https://doi.org/10.1007/s00446-010-0120-6

    Article  MathSciNet  Google Scholar 

  22. Gorla, D.: Towards a unified approach to encodability and separation results for process calculi. Inf. Comput. 208(9), 1031–1053 (2010). https://doi.org/10.1016/j.ic.2010.05.002

    Article  MathSciNet  MATH  Google Scholar 

  23. Gorla, D., Nestmann, U.: Full abstraction for expressiveness: history, myths and facts. Math. Struct. Comput. Sci. 26(4), 639–654 (2016). https://doi.org/10.1017/S0960129514000279

    Article  MathSciNet  MATH  Google Scholar 

  24. Honda, K., Tokoro, M.: An object calculus for asynchronous communication. In: America, P. (ed.) ECOOP 1991. LNCS, vol. 512, pp. 133–147. Springer, Heidelberg (1991). https://doi.org/10.1007/BFb0057019

    Chapter  Google Scholar 

  25. Lanese, I., Pérez, J.A., Sangiorgi, D., Schmitt, A.: On the expressiveness of polyadic and synchronous communication in higher-order process calculi. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 442–453. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14162-1_37

    Chapter  MATH  Google Scholar 

  26. Milner, R.: The Polyadic \(\pi \)-Calculus: A Tutorial. Technical Report ECS-LFCS-91-180, The University of Edinburgh. Informatics Report Series (1991)

    Google Scholar 

  27. Milner, R.: Functions as processes. Math. Struct. Comput. Sci. 2(2), 119–141 (1992). https://doi.org/10.1017/S0960129500001407

    Article  MathSciNet  MATH  Google Scholar 

  28. Natarajan, V., Cleaveland, R.: Divergence and fair testing. In: Fülöp, Z., Gécseg, F. (eds.) ICALP 1995. LNCS, vol. 944, pp. 648–659. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60084-1_112

    Chapter  MATH  Google Scholar 

  29. Nestmann, U.: What is a “Good” encoding of guarded choice? Inf. Comput. 156(1–2), 287–319 (2000). https://doi.org/10.1006/inco.1999.2822

    Article  MathSciNet  MATH  Google Scholar 

  30. Nestmann, U., Pierce, B.C.: Decoding choice encodings. Inf. Comput. 163(1), 1–59 (2000). https://doi.org/10.1006/inco.2000.2868

    Article  MathSciNet  MATH  Google Scholar 

  31. Palamidessi, C.: Comparing the expressive power of the synchronous and asynchronous pi-calculi. Math. Struct. Comput. Sci. 13(5), 685–719 (2003). https://doi.org/10.1017/S0960129503004043

    Article  Google Scholar 

  32. Parrow, J.: General conditions for full abstraction. Math. Struct. Comput. Sci. 26(4), 655–657 (2016). https://doi.org/10.1017/S0960129514000280

    Article  MathSciNet  MATH  Google Scholar 

  33. Peters, K., van Glabbeek, R.J.: Analysing and comparing encodability criteria. In: Crafa, S., Gebler, D.E. (eds.) EXPRESS/SOS 2015. EPTCS, vol. 190, pp. 46–60 (2015). https://doi.org/10.4204/EPTCS.190.4

    Article  MathSciNet  Google Scholar 

  34. Peters, K., Nestmann, U.: Is it a “Good” encoding of mixed choice? In: Birkedal, L. (ed.) FoSSaCS 2012. LNCS, vol. 7213, pp. 210–224. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28729-9_14

    Chapter  MATH  Google Scholar 

  35. Peters, K., Nestmann, U., Goltz, U.: On distributability in process calculi. In: Felleisen, M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 310–329. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37036-6_18

    Chapter  Google Scholar 

  36. Peters, K., Schicke, J.-W., Nestmann, U.: Synchrony vs causality in the asynchronous pi-calculus. In: Luttik, B., Valencia, F. (eds.) Proceedings EXPRESS 2011, EPTCS, vol. 64, pp. 89–103 (2011). https://doi.org/10.4204/EPTCS.64.7

    Article  Google Scholar 

  37. Quaglia, P., Walker, D.: On synchronous and asynchronous mobile processes. In: Tiuryn, J. (ed.) FoSSaCS 2000. LNCS, vol. 1784, pp. 283–296. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-46432-8_19

    Chapter  MATH  Google Scholar 

  38. Riecke, J.G.: Fully abstract translations between functional languages. In: Wise, D.S. (ed.) Proceedings POPL 1991, pp. 245–254. ACM Press (1991). https://doi.org/10.1145/99583.99617

  39. Sangiorgi, D., Walker, D.: The \(\pi \)-Calculus: A Theory of Mobile Processes. Cambridge University Press, Cambridge (2001)

    Google Scholar 

  40. Shapiro, E.Y.: Separating concurrent languages with categories of language embeddings. In: Koutsougeras, C., Vitter, J.S. (eds.) STOC 1991, pp. 198–208. ACM (1991). https://doi.org/10.1145/103418.103423

  41. Shapiro, E.: Embeddings among concurrent programming languages. In: Cleaveland, W.R. (ed.) CONCUR 1992. LNCS, vol. 630, pp. 486–503. Springer, Heidelberg (1992). https://doi.org/10.1007/BFb0084811

    Chapter  Google Scholar 

  42. de Simone, R.: Higher-level synchronising devices in Meije-SCCS. Theoret. Comput. Sci. 37, 245–267 (1985). https://doi.org/10.1016/0304-3975(85)90093-3

    Article  MathSciNet  MATH  Google Scholar 

  43. Vaandrager, F.W.: Expressiveness results for process algebras. In: de Bakker, J.W., de Roever, W.-P., Rozenberg, G. (eds.) REX 1992. LNCS, vol. 666, pp. 609–638. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-56596-5_49

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rob van Glabbeek .

Editor information

Editors and Affiliations

Additional information

This paper is dedicated to Catuscia Palamidessi, on the occasion of her birthday. It has always been a big pleasure and inspiration to discuss with her.

A Appendix: Boudol’s Translation is Valid up to

A Appendix: Boudol’s Translation is Valid up to

Before we prove validity of Boudol’s translation up to weak barbed bisimulation, we further investigate the protocol steps established by Boudol’s encoding. Let and . Pick uv not free in P and Q, with . Then

figure an

Here structural congruence is applied in omitting parallel components \(\varvec{0}\) and empty binders (u) and (v). Now the crucial idea in our proof is that the last two reductions are inert, in that set of the potential behaviours of a process is not diminished by doing (internal) steps of this kind. The first reduction above in general is not inert, as it creates a commitment between a sender and a receiver to communicate, and this commitment goes at the expense of the potential of one of the two parties to do this communication with another partner. We employ a relation that captures these inert reductions in a context.

Definition 14

([18]). Let \(\equiv \!\Rrightarrow \) be the smallest relation on \(\mathcal {P}_{\mathrm{a\pi }}\) such that

  1. 1.

    ,

  2. 2.

    if \(P\equiv \!\Rrightarrow Q\) then \(P|C \equiv \!\Rrightarrow Q|C\),

  3. 3.

    if \(P\equiv \!\Rrightarrow Q\) then \((w) P\equiv \!\Rrightarrow (w) Q\),

  4. 4.

    if \(P\mathrel {\equiv }P' \equiv \!\Rrightarrow Q' \mathrel {\equiv }Q\) then \(P\equiv \!\Rrightarrow Q\),

where .

First of all observe that whenever two processes are related by \(\equiv \!\Rrightarrow \), an actual reduction takes place.

Lemma 3

([18]). If \(P \equiv \!\Rrightarrow Q\) then \(P \longmapsto Q\).

The next two lemmas confirm that inert reductions do not diminish the potential behaviour of a process.

Lemma 4

([18]). If \(P \equiv \!\Rrightarrow Q\) and \(P \longmapsto P'\) with then there is a \(Q'\) with \(Q \longmapsto Q'\) and \(P' \equiv \!\Rrightarrow Q'\).

Corollary 3

If \(P \equiv \!\Rrightarrow ^* Q\) and \(P \longmapsto P'\) then either or there is a \(Q'\) with \(Q \longmapsto Q'\) and \(P' \equiv \!\Rrightarrow ^* Q'\).

Proof

By repeated application of Lemma 4.    \(\square \)

Lemma 5

If \(P \equiv \!\Rrightarrow Q\) and \(P {\downarrow _{a}}\) for \(a \in \{ x, \bar{x} \,|\, x \in \mathcal N \}\) then \(Q {\downarrow _{a}}\).

Proof

Let \((\tilde{w})P\) for with denote \((w_1)\cdots (w_n)P\) for some arbitrary order of the \((w_i)\). Using a trivial variant of Lemma 1.2.20 in [39], there are \(\tilde{w} \subseteq \mathcal {N}\), and , such that \(x\in \tilde{w}\) and . Since \(P{{\downarrow _{a}}}\), it must be that \(a{=}u\) or \(\bar{u}\) with \(u\notin \tilde{w}\), and \(C{{\downarrow _{a}}}\). Hence \(Q{{\downarrow _{a}}}\).    \(\square \)

The following lemma states, in terms of Gorla’s framework, operational completeness [22]: if a source term is able to make a step, then its translation is able to simulate that step by protocol steps.

Lemma 6

([18]). Let . If \(P \longmapsto P'\) then .

Finally, the next lemma was a crucial step in establishing operational soundness [22].

Lemma 7

([18]). Let and . If then there is a \(P'\) with \(P \longmapsto P'\) and .

Using these lemmas, we prove the validity of Boudol’s encoding up to weak barbed bisimilarity.

Theorem 4

Boudol’s encoding is valid up to .

Proof

Define the relation \(\mathrel {\mathcal {R}}\) by \(P\mathrel {\mathcal {R}}Q\) iff . It suffices to show that the symmetric closure of \(\mathrel {\mathcal {R}}\) is a weak barbed bisimulation.

To show that \(\mathrel {\mathcal {R}}\) satisfies Clause 1 of Definition 8, suppose \(P \mathrel {\mathcal {R}}Q\) and \(P {\downarrow _{a}}\) for \(a \in \{ x, \bar{x} \,|\, x \in \mathcal N \}\). Then by Lemma 1. Since , we obtain by Lemma 3, and thus \(Q {\Downarrow _{a}}\).

To show that \(\mathrel {\mathcal {R}}\) also satisfies Clause 2, suppose \(P \mathrel {\mathcal {R}}Q\) and \(P \longmapsto P'\). Since , by Lemmas 3 and 6 we have .

To show that \(\mathrel {\mathcal {R}}^{-1}\) satisfies Clause 1, suppose \(P \mathrel {\mathcal {R}}Q\) and \(Q {\downarrow _{a}}\). Since , Lemma 5 yields , and Lemma 1 gives \(P {\downarrow _{a}}\), which implies \(P {\Downarrow _{a}}\).

To show that \(\mathrel {\mathcal {R}}^{-1}\) satisfies Clause 2, suppose \(P \mathrel {\mathcal {R}}Q\) and \(Q \longmapsto Q'\). Since , by Corollary 3 either or there is a \(Q''\) with and . In the first case \(P \mathrel {\mathcal {R}}Q'\), so taking \(P':=P\) we are done. In the second case, by Lemma 7 there is a \(P'\) with \(P \longmapsto P'\) and . We thus have \(P' \mathrel {\mathcal {R}}Q'\).    \(\square \)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

van Glabbeek, R., Goltz, U., Lippert, C., Mennicke, S. (2019). Stronger Validity Criteria for Encoding Synchrony. In: Alvim, M., Chatzikokolakis, K., Olarte, C., Valencia, F. (eds) The Art of Modelling Computational Systems: A Journey from Logic and Concurrency to Security and Privacy. Lecture Notes in Computer Science(), vol 11760. Springer, Cham. https://doi.org/10.1007/978-3-030-31175-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31175-9_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31174-2

  • Online ISBN: 978-3-030-31175-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics