Skip to main content

Head Motion – Based Robot’s Controlling System Using Virtual Reality Glasses

  • Conference paper
  • First Online:
Image Processing and Communications (IP&C 2019)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1062))

Included in the following conference series:

  • 647 Accesses

Abstract

This paper proposes head motion – based robot’s controlling system using virtual reality glasses that was implemented using various up-to date software and hardware solutions. System is consisted of robotic platform with DC motors controlled by micro controller with Wi-fi network interface. The second micro controller is used as access point and host of MJPG stereo vision camera stream. Virtual reality glasses are used to control motor by analyzing user’s head motion and to display stereo image from camera mounted in the front of the chassis. This article also introduces a user - centered head rotation system similar to yaw – pitch – roll that can be used to intuitively design functions of user interface. All source codes that were made for system implementation can be downloaded and tested.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Borowska-Terka, A., Strumiłło, P.: Algorithms for head movements’ recognition in an electronic human computer interface. Przegląd Elektrotechniczny 93(8), 131–134 (2017)

    Google Scholar 

  2. Brütsch, K., Koenig, A., Zimmerli, L., Mérillat-Koeneke, S., Riener, R., Jäncke, L., van Hedel, H.J., Meyer-Heim, A.: Virtual reality for enhancement of robot-assisted gait training in children with neurological gait disorders. J. Rehabil. Med. 43(6), 493–499 (2011)

    Article  Google Scholar 

  3. Dornberger, R., Korkut, S., Lutz, J., Berga, J., Jäger, J.: Prototype-based research on immersive virtual reality and on self-replicating robots. In: Business Information Systems and Technology 4.0 Studies in Systems, Decision and Control, pp. 257–274 (2018). https://doi.org/10.1007/978-3-319-74322-6_17

    Chapter  Google Scholar 

  4. Engel, J., Stückler, J., Cremers, D.: Large-scale direct slam with stereo cameras. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1935–1942, September 2015. https://doi.org/10.1109/IROS.2015.7353631

  5. Grygiel, R., Bieda, R., Wojciechowski, K.: Angles from gyroscope to complementary filter in IMU. Przegląd Elektrotechniczny 90(9), 217–224 (2014)

    Google Scholar 

  6. Hachaj, T.: GitHub repository of the project (2019). https://github.com/browarsoftware/rpm_rotation_calculation. Accessed 22 Mar 2019

  7. Kato, Y.: A remote navigation system for a simple tele-presence robot with virtual reality. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4524–4529, September 2015. https://doi.org/10.1109/IROS.2015.7354020

  8. Kurup, P., Liu, K.: Telepresence robot with autonomous navigation and virtual reality: demo abstract. In: SenSys (2016)

    Google Scholar 

  9. Lin, L., Shi, Y., Tan, A., Bogari, M., Zhu, M., Xin, Y., Xu, H., Zhang, Y., Xie, L., Chai, G.: Mandibular angle split osteotomy based on a novel augmented reality navigation using specialized robot-assisted arms - a feasibility study. J. Cranio-Maxillofac. Surg. 44(2), 215–223 (2016). https://doi.org/10.1016/j.jcms.2015.10.024. http://www.sciencedirect.com/science/article/pii/S1010518215003674

    Article  Google Scholar 

  10. Monferrer, A., Bonyuet, D.: Cooperative robot teleoperation through virtual reality interfaces. In: Proceedings Sixth International Conference on Information Visualisation, pp. 243–248, July 2002. https://doi.org/10.1109/IV.2002.1028783

  11. Mur-Artal, R., Tardüs, J.D.: ORB-SLAM2: an open-source SLAM system for monocular, stereo, and RGB-D cameras. IEEE Trans. Robot. 33(5), 1255–1262 (2017). https://doi.org/10.1109/TRO.2017.2705103

    Article  Google Scholar 

  12. Nguyen, L., Bualat, M., Edwards, L., Flueckiger, L., Neveu, C., Schwehr, K., Wagner, M., Zbinden, E.: Virtual reality interfaces for visualization and control of remote vehicles. Auton. Robots 11(1), 59–68 (2001). https://doi.org/10.1023/a:1011208212722

    Article  MATH  Google Scholar 

  13. Regenbrecht, J., Tavakkoli, A., Loffredo, D.: A robust and intuitive 3D interface for teleoperation of autonomous robotic agents through immersive virtual reality environments. In: 2017 IEEE Symposium on 3D User Interfaces (3DUI), pp. 199–200, March 2017. https://doi.org/10.1109/3DUI.2017.7893340

  14. Usenko, V., Engel, J., Stückler, J., Cremers, D.: Direct visual-inertial odometry with stereo cameras. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), p. 1885 (2016). https://doi.org/10.1109/ICRA.2016.7487335

  15. Wang, R., Schworer, M., Cremers, D.: Stereo DSO: large-scale direct sparse visual odometry with stereo cameras. In: IEEE International Conference on Computer Vision (ICCV), October 2017

    Google Scholar 

  16. Zinchenko, K., Komarov, O., Song, K.: Virtual reality control of a robotic camera holder for minimally invasive surgery. In: 2017 11th Asian Control Conference (ASCC), pp. 970–975, December 2017. https://doi.org/10.1109/ASCC.2017.8287302

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomasz Hachaj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hachaj, T. (2020). Head Motion – Based Robot’s Controlling System Using Virtual Reality Glasses. In: Choraś, M., Choraś, R. (eds) Image Processing and Communications. IP&C 2019. Advances in Intelligent Systems and Computing, vol 1062. Springer, Cham. https://doi.org/10.1007/978-3-030-31254-1_2

Download citation

Publish with us

Policies and ethics