Skip to main content

Color Normalization-Based Nuclei Detection in Images of Hematoxylin and Eosin-Stained Multi Organ Tissues

  • Conference paper
  • First Online:
Image Processing and Communications (IP&C 2019)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1062))

Included in the following conference series:

Abstract

This article presents an adaptation of a color transfer method for binarization of cell nuclei in Hematoxylin- and Eosin-stained microscopy images. The aim is to check the ability and accuracy of nuclei detection for multi-organ cases using a public dataset. The results are obtained using the Monte Carlo method and then compared to the ground truth segmentations. Some cases are presented in detail and discussed. This method seems to be promising for the further development of classic and deterministic algorithms for H&E nuclei detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bautista, P., Hashimoto, N., Yagi, Y.: Color standardization in whole slide imaging using a color calibration slide. J. Pathol. Inform. 5(1), 4 (2014). https://doi.org/10.4103/2153-3539.126153

    ArticleĀ  Google ScholarĀ 

  2. Ing, N., Salman, S., Ma, Z., Walts, A., Knudsen, B., Gertych, A.: Machine learning can reliably distinguish histological patterns of micropapillary and solid lung adenocarcinomas. In: Conference of Information Technologies in Biomedicine. pp. 193ā€“206. Springer (2016)

    Google ScholarĀ 

  3. Iwaszenko, S., Nurzynska, K.: Rock grains segmentation using curvilinear structures based features. In: Real-Time Image Processing and Deep Learning 2019, vol. 10996 (2019). https://doi.org/10.1117/12.2519580

  4. Kłeczek, P., Dyduch, G., Jaworek-Korjakowska, J., Tadeusiewicz, R.: Automated epidermis segmentation in histopathological images of human skin stained with hematoxylin and eosin. In: Medical Imaging 2017: Digital Pathology, vol. 10140, p. 101400M. International Society for Optics and Photonics (2017)

    Google ScholarĀ 

  5. Kłeczek, P., MĆ³l, S., Jaworek-Korjakowska, J.: The accuracy of H&E stain unmixing techniques when estimating relative stain concentrations. In: Polish Conference on Biocybernetics and Biomedical Engineering, PCBBE 2017. AISC, vol. 647, pp. 87ā€“97. Springer (2017)

    Google ScholarĀ 

  6. Korzynska, A., Roszkowiak, L., Pijanowska, D., Kozlowski, W., Markiewicz, T.: The influence of the microscope lamp filament colour temperature on the process of digital images of histological slides acquisition standardization. Diagn. Pathol. 9(1), S13 (2014)

    ArticleĀ  Google ScholarĀ 

  7. Kowal, M., Filipczuk, P., Obuchowicz, A., Korbicz, J., Monczak, R.: Computer-aided diagnosis of breast cancer based on fine needle biopsy microscopic images. Comput. Biol. Med. 43(10), 1563ā€“1572 (2013)

    ArticleĀ  Google ScholarĀ 

  8. Kowal, M., Korbicz, J.: Marked point process for nuclei detection in breast cancer microscopic images. In: Polish Conference on Biocybernetics and Biomedical Engineering, PCBBE 2017. AISC, vol. 647, pp. 230ā€“241. Springer (2018)

    Google ScholarĀ 

  9. Kowal, M., Skobel, M., Nowicki, N.: The feature selection problem in computer-assisted cytology. Int. J. Appl. Math. Comput. Sci. 28(4), 759ā€“770 (2018)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  10. Kumar, N., Verma, R., Sharma, S., Bhargava, S., Vahadane, A., Sethi, A.: A dataset and a technique for generalized nuclear segmentation for computational pathology. IEEE Transact. Med. Imaging 36(7), 1550ā€“1560 (2017)

    ArticleĀ  Google ScholarĀ 

  11. Li, J., Speier, W., Ho, K.C., Sarma, K.V., Gertych, A., Knudsen, B.S., Arnold, C.W.: An em-based semi-supervised deep learning approach for semantic segmentation of histopathological images from radical prostatectomies. Comput. Med. Imaging Graph. 69, 125ā€“133 (2018)

    ArticleĀ  Google ScholarĀ 

  12. Li, X., Plataniotis, K.N.: A complete color normalization approach to histopathology images using color cues computed from saturation-weighted statistics. IEEE Transact. Biomed. Eng. 62(7), 1862ā€“1873 (2015)

    ArticleĀ  Google ScholarĀ 

  13. Macenko, M., Niethammer, M., Marron, J., Borland, D., Woosley, J.T., Guan, X., Schmitt, C., Thomas, N.E.: A method for normalizing histology slides for quantitative analysis. In: IEEE International Symposium on Biomedical Imaging, ISBI 2009, pp. 1107ā€“1110. IEEE (2009)

    Google ScholarĀ 

  14. Mazurek, P., Oszutowska-Mazurek, D.: From the Slit-Island method to the Ising model: analysis of irregular grayscale objects. Int. J. Appl. Math. Comput. Sci. 24(1), 49ā€“63 (2014)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  15. Nurzynska, K.: Optimal parameter search for colour normalization aiding cell nuclei segmentation. CCIS, vol. 928, pp. 349ā€“360. Springer (2018)

    Google ScholarĀ 

  16. Onder, D., Zengin, S., Sarioglu, S.: A review on color normalization and color deconvolution methods in histopathology. Appl. Immunohistochem. Mol. Morphol. 22(10), 713ā€“719 (2014)

    ArticleĀ  Google ScholarĀ 

  17. Oszutowska-Mazurek, D., Mazurek, P., Parafiniuk, M., Stachowicz, A.: Method-induced errors in fractal analysis of lung microscopic images segmented with the use of histaenn (histogram-based autoencoder neural network). Appl. Sci. 8(12), 2356 (2018)

    ArticleĀ  Google ScholarĀ 

  18. Piorkowski, A., Gertych, A.: Color normalization approach to adjust nuclei segmentation in images of hematoxylin and eosin stained tissue. In: Information Technology in Biomedicine. ITIB 2018. AISC, vol. 762, pp. 393ā€“406. Springer (2019)

    Google ScholarĀ 

  19. Reinhard, E., Adhikhmin, M., Gooch, B., Shirley, P.: Color transfer between images. IEEE Comput. Graph. Appl. 21(5), 34ā€“41 (2001)

    ArticleĀ  Google ScholarĀ 

  20. Roszkowiak, Ł., Korzyńska, A., Siemion, K., Pijanowska, D.: The influence of object refining in digital pathology. In: Image Processing and Communications Challenges 10. IP&C 2018. AISC, vol. 892, pp. 55ā€“62. Springer (2019)

    Google ScholarĀ 

  21. Ruifrok, A.C., Johnston, D.A., et al.: Quantification of histochemical staining by color deconvolution. Anal. Quant. Cytol. Histol. 23(4), 291ā€“299 (2001)

    Google ScholarĀ 

  22. Salvi, M., Molinari, F.: Multi-tissue and multi-scale approach for nuclei segmentation in H&E stained images. Biomed. Eng. online 17(1), 89 (2018)

    ArticleĀ  Google ScholarĀ 

  23. Starosolski, R.: New simple and efficient color space transformations for lossless image compression. J. Vis. Commun. Image Represent. 25(5), 1056ā€“1063 (2014)

    ArticleĀ  Google ScholarĀ 

  24. Starosolski, R.: Human visual system inspired color space transform in lossy JPEG 2000 and JPEG XR compression. In: International Conference: Beyond Databases, Architectures and Structures, pp. 564ā€“575. Springer (2017)

    Google ScholarĀ 

  25. Tosta, T.A.A., Neves, L.A., do Nascimento, M.Z., Segmentation methods of h&e-stained histological images of lymphoma: Segmentation methods of H&E-stained histological images of lymphoma: a review. Inf. Med. 9, 35ā€“43 (2017)

    Google ScholarĀ 

Download references

Acknowledgments

This research was funded by AGH University of Science and Technology as a research project No. 16.16.120.773.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam PiĆ³rkowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

PiĆ³rkowski, A. (2020). Color Normalization-Based Nuclei Detection in Images of Hematoxylin and Eosin-Stained Multi Organ Tissues. In: Choraś, M., Choraś, R. (eds) Image Processing and Communications. IP&C 2019. Advances in Intelligent Systems and Computing, vol 1062. Springer, Cham. https://doi.org/10.1007/978-3-030-31254-1_8

Download citation

Publish with us

Policies and ethics