Skip to main content

RaKUn: Rank-based Keyword Extraction via Unsupervised Learning and Meta Vertex Aggregation

  • Conference paper
  • First Online:
Statistical Language and Speech Processing (SLSP 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11816))

Included in the following conference series:

Abstract

Keyword extraction is used for summarizing the content of a document and supports efficient document retrieval, and is as such an indispensable part of modern text-based systems. We explore how load centrality, a graph-theoretic measure applied to graphs derived from a given text can be used to efficiently identify and rank keywords. Introducing meta vertices (aggregates of existing vertices) and systematic redundancy filters, the proposed method performs on par with state-of-the-art for the keyword extraction task on 14 diverse datasets. The proposed method is unsupervised, interpretable and can also be used for document visualization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/LIAAD/KeywordExtractor-Datasets.

  2. 2.

    We attempted to reproduce YAKE evaluation procedure based on their experimental setup description and also thank the authors for additional explanation regarding the evaluation. For comparison of results we refer to their online repository https://github.com/LIAAD/yake [7].

  3. 3.

    The complete results and the code are available at https://github.com/SkBlaz/rakun.

  4. 4.

    This being a standard procedure, as suggested by the authors of YAKE.

  5. 5.

    https://github.com/LIAAD/yake/blob/master/docs/YAKEvsBaselines.jpg (accessed on: June 11, 2019).

References

  1. Augenstein, I., Das, M., Riedel, S., Vikraman, L., McCallum, A.: Semeval 2017 task 10: Scienceie - extracting keyphrases and relations from scientific publications. CoRR abs/1704.02853 (2017)

    Google Scholar 

  2. Beliga, S., Meštrović, A., Martinčić-Ipšić, S.: An overview of graph-based keyword extraction methods and approaches. J. Inf. Organ. Sci. 39(1), 1–20 (2015)

    Google Scholar 

  3. Bougouin, A., Boudin, F., Daille, B.: Topicrank: graph-based topic ranking for keyphrase extraction. In: International Joint Conference on Natural Language Processing (IJCNLP), pp. 543–551 (2013)

    Google Scholar 

  4. Brandes, U.: On variants of shortest-path betweenness centrality and their generic computation. Soc. Netw. 30(2), 136–145 (2008)

    Article  Google Scholar 

  5. Cai, H., Zheng, V.W., Chang, K.C.C.: A comprehensive survey of graph embedding: Problems, techniques, and applications. IEEE Trans. Knowl. Data Eng. 30(9), 1616–1637 (2018)

    Article  Google Scholar 

  6. Campos, R., Mangaravite, V., Pasquali, A., Jorge, A.M., Nunes, C., Jatowt, A.: A text feature based automatic keyword extraction method for single documents. In: Pasi, G., Piwowarski, B., Azzopardi, L., Hanbury, A. (eds.) Advances in Information Retrieval, pp. 684–691. Springer International Publishing, Cham (2018)

    Chapter  Google Scholar 

  7. Campos, R., Mangaravite, V., Pasquali, A., Jorge, A.M., Nunes, C., Jatowt, A.: YAKE! collection-independent automatic keyword extractor. In: Pasi, G., Piwowarski, B., Azzopardi, L., Hanbury, A. (eds.) ECIR 2018. LNCS, vol. 10772, pp. 806–810. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76941-7_80

    Chapter  Google Scholar 

  8. Chan, H., Perrig, A., Song, D.: Secure hierarchical in-network aggregation in sensor networks. In: Proceedings of the 13th ACM Conference On Computer And Communications Security, pp. 278–287. ACM (2006)

    Google Scholar 

  9. Doruker, P., Jernigan, R.L., Bahar, I.: Dynamics of large proteins through hierarchical levels of coarse-grained structures. J. comput. chem. 23(1), 119–127 (2002)

    Article  Google Scholar 

  10. El-Beltagy, S.R., Rafea, A.: Kp-miner: a keyphrase extraction system for english and arabic documents. Inf. SysT. 34(1), 132–144 (2009)

    Article  Google Scholar 

  11. Goh, K.I., Kahng, B., Kim, D.: Universal behavior of load distribution in scale-free networks. Phys. Rev. Lett. 87, 278701 (2001)

    Article  Google Scholar 

  12. Gollapalli, S.D., Caragea, C.: Extracting keyphrases from research papers using citation networks. In: Twenty-Eighth AAAI Conference on Artificial Intelligence (2014)

    Google Scholar 

  13. Hasan, K.S., Ng, V.: Automatic keyphrase extraction: a survey of the state of the art. In: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), vol. 1, pp. 1262–1273 (2014)

    Google Scholar 

  14. Hulth, A.: Improved automatic keyword extraction given more linguistic knowledge. In: Proceedings of the 2003 Conference on Empirical Methods in Natural Language Processing, pp. 216–223. Association for Computational Linguistics (2003)

    Google Scholar 

  15. Hulth, A.: Improved automatic keyword extraction given more linguistic knowledge. In: Proceedings of the 2003 Conference on Empirical Methods in Natural Language Processing, EMNLP 2003, pp. 216–223 (2003)

    Google Scholar 

  16. Jin, M., Kim, J., Gu, X.D.: Discrete surface ricci flow: theory and applications. In: Martin, R., Sabin, M., Winkler, J. (eds.) Mathematics of Surfaces 2007. LNCS, vol. 4647, pp. 209–232. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73843-5_13

    Chapter  Google Scholar 

  17. Kim, S.N., Medelyan, O., Kan, M.Y., Baldwin, T.: Semeval-2010 task 5: automatic keyphrase extraction from scientific articles. In: Proceedings of the 5th International Workshop on Semantic Evaluation, pp. 21–26. SemEval 2010 (2010)

    Google Scholar 

  18. Marujo, L., Viveiros, M., da Silva Neto, J.P.: Keyphrase cloud generation of broadcast news. CoRR abs/1306.4606 (2013)

    Google Scholar 

  19. Medelyan, O., Frank, E., Witten, I.H.: Human-competitive tagging using automatic keyphrase extraction. In: Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing, EMNLP 2009, vol. 3, pp. 1318–1327 (2009)

    Google Scholar 

  20. Medelyan, O., Witten, I.H.: Domain-independent automatic keyphrase indexing with small training sets. J. Am. Soc. Inf. Sci. Technol. 59(7), 1026–1040 (2008)

    Article  Google Scholar 

  21. Medelyan, O., Witten, I.H., Milne, D.: Topic indexing with wikipedia. In: Proceedings of the AAAI WikiAI Workshop, vol. 1, pp. 19–24 (2008)

    Google Scholar 

  22. Mihalcea, R., Tarau, P.: Textrank: Bringing order into text. In: Proceedings of the 2004 Conference On Empirical Methods in Natural Language Processing (2004)

    Google Scholar 

  23. Nguyen, T.D., Kan, M.-Y.: Keyphrase extraction in scientific publications. In: Goh, D.H.-L., Cao, T.H., Sølvberg, I.T., Rasmussen, E. (eds.) ICADL 2007. LNCS, vol. 4822, pp. 317–326. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-77094-7_41

    Chapter  Google Scholar 

  24. Nguyen, T.D., Luong, M.T.: Wingnus: keyphrase extraction utilizing document logical structure. In: Proceedings of the 5th international workshop on semantic evaluation, pp. 166–169. Association for Computational Linguistics (2010)

    Google Scholar 

  25. Rose, S., Engel, D., Cramer, N., Cowley, W.: Automatic keyword extraction from individual documents. In: Text mining: Applications and Theory, pp. 1–20 (2010)

    Google Scholar 

  26. Schutz, A.T., et al.: Keyphrase extraction from single documents in the open domain exploiting linguistic and statistical methods. Master’s thesis, National University of Ireland (2008)

    Google Scholar 

  27. Škrlj, B., Kralj, J., Lavrač, N., Pollak, S.: Towards robust text classification with semantics-aware recurrent neural architecture. Mach. Learn. Knowl. Extr. 1(2), 575–589 (2019)

    Article  Google Scholar 

  28. Spitz, A., Gertz, M.: Entity-centric topic extraction and exploration: a network-based approach. In: Pasi, G., Piwowarski, B., Azzopardi, L., Hanbury, A. (eds.) ECIR 2018. LNCS, vol. 10772, pp. 3–15. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76941-7_1

    Chapter  Google Scholar 

  29. Sterckx, L., Demeester, T., Deleu, J., Develder, C.: Topical word importance for fast keyphrase extraction. In: Proceedings of the 24th International Conference on World Wide Web, pp. 121–122. ACM (2015)

    Google Scholar 

  30. Wan, X., Xiao, J.: Single document keyphrase extraction using neighborhood knowledge. In: AAAI, vol. 8, pp. 855–860 (2008)

    Google Scholar 

  31. Witten, I.H., Paynter, G.W., Frank, E., Gutwin, C., Nevill-Manning, C.G.: KEA: Practical automated keyphrase extraction. In: Design and Usability of Digital Libraries: Case Studies in the Asia Pacific, pp. 129–152. IGI Global (2005)

    Google Scholar 

Download references

Acknowledgements

The work was supported by the Slovenian Research Agency through a young researcher grant [BŠ], core research programme (P2-0103), and projects Semantic Data Mining for Linked Open Data (N2-0078) and Terminology and knowledge frames across languages (J6-9372). This work was supported also by the EU Horizon 2020 research and innovation programme, Grant No. 825153, EMBEDDIA (Cross-Lingual Embeddings for Less-Represented Languages in European News Media). The results of this publication reflect only the authors’ views and the EC is not responsible for any use that may be made of the information it contains. We also thank the authors of YAKE for their clarifications.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Blaž Škrlj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Škrlj, B., Repar, A., Pollak, S. (2019). RaKUn: Rank-based Keyword Extraction via Unsupervised Learning and Meta Vertex Aggregation. In: Martín-Vide, C., Purver, M., Pollak, S. (eds) Statistical Language and Speech Processing. SLSP 2019. Lecture Notes in Computer Science(), vol 11816. Springer, Cham. https://doi.org/10.1007/978-3-030-31372-2_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31372-2_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31371-5

  • Online ISBN: 978-3-030-31372-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics