Skip to main content

Explanation-Friendly Query Answering Under Uncertainty

  • Chapter
  • First Online:
Reasoning Web. Explainable Artificial Intelligence

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11810))

  • 1219 Accesses

Abstract

Many tasks often regarded as requiring some form of intelligence to perform can be seen as instances of query answering over a semantically rich knowledge base. In this context, two of the main problems that arise are: (i) uncertainty, including both inherent uncertainty (such as events involving the weather) and uncertainty arising from lack of sufficient knowledge; and (ii) inconsistency, which involves dealing with conflicting knowledge. These unavoidable characteristics of real world knowledge often yield complex models of reasoning; assuming these models are mostly used by humans as decision-support systems, meaningful explainability of their results is a critical feature. These lecture notes are divided into two parts, one for each of these basic issues. In Part 1, we present basic probabilistic graphical models and discuss how they can be incorporated into powerful ontological languages; in Part 2, we discuss both classical inconsistency-tolerant semantics for ontological query answering based on the concept of repair and other semantics that aim towards more flexible yet principled ways to handle inconsistency. Finally, in both parts we ponder the issue of deriving different kinds of explanations that can be attached to query results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note, however, that the human aspect is not necessarily present, since the argumentation process could be carried out between software agents.

  2. 2.

    As an aside, and using concepts that will be defined shortly, the fundamental result linking homomorphisms to conjunctive query answering over relational databases can be informally stated as follows: let Q be a BCQ, and J be a database instance; then, if and only if there exists a homomorphism from the canonical database instance \(I^Q\) (essentially, an instance built using the predicates and variables from Q) to J [5, 19].

  3. 3.

    https://eugdpr.org/.

References

  1. Alonso, J.M., Castiello, C., Mencar, C.: A bibliometric analysis of the explainable artificial intelligence research field. In: Medina, J., et al. (eds.) IPMU 2018. CCIS, vol. 853, pp. 3–15. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91473-2_1

    Chapter  Google Scholar 

  2. Arenas, M., Bertossi, L.E., Chomicki, J.: Consistent query answers in inconsistent databases. In: Proceedings of PODS, pp. 68–79 (1999)

    Google Scholar 

  3. Arioua, A., Croitoru, M.: Dialectical characterization of consistent query explanation with existential rules. In: FLAIRS: Florida Artificial Intelligence Research Society (2016)

    Google Scholar 

  4. Arioua, A., Tamani, N., Croitoru, M.: Query answering explanation in inconsistent datalog\(+/-\) knowledge bases. In: Chen, Q., Hameurlain, A., Toumani, F., Wagner, R., Decker, H. (eds.) DEXA 2015. LNCS, vol. 9261, pp. 203–219. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22849-5_15

    Chapter  MATH  Google Scholar 

  5. Atserias, A., Dawar, A., Kolaitis, P.G.: On preservation under homomorphisms and unions of conjunctive queries. J. ACM (JACM) 53(2), 208–237 (2006)

    Article  MathSciNet  Google Scholar 

  6. Baget, J., Mugnier, M., Rudolph, S., Thomazo, M.: Walking the complexity lines for generalized guarded existential rules. In: Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), pp. 712–717 (2011)

    Google Scholar 

  7. Baral, C., Gelfond, M., Rushton, N.: Probabilistic reasoning with answer sets. In: Lifschitz, V., Niemelä, I. (eds.) LPNMR 2004. LNCS (LNAI), vol. 2923, pp. 21–33. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-24609-1_5

    Chapter  MATH  Google Scholar 

  8. Barber, D.: Bayesian Reasoning and Machine Learning. Cambridge University Press, Cambridge (2012)

    Google Scholar 

  9. Beeri, C., Vardi, M.Y.: The implication problem for data dependencies. In: Even, S., Kariv, O. (eds.) ICALP 1981. LNCS, vol. 115, pp. 73–85. Springer, Heidelberg (1981). https://doi.org/10.1007/3-540-10843-2_7

    Chapter  Google Scholar 

  10. Bienvenu, M.: Inconsistency-tolerant conjunctive query answering for simple ontologies. In: Kazakov, Y., Lembo, D., Wolter, F. (eds.) Proceedings of DL, vol. 846. CEUR-WS.org (2012)

    Google Scholar 

  11. Bienvenu, M., Bourgaux, C., Goasdoue, F.: Explaining inconsistency-tolerant query answering over description logic knowledge bases. In: Proceedings of AAAI 2016, pp. 900–906. AAAI Press (2016)

    Google Scholar 

  12. Bienvenu, M., Rosati, R.: Tractable approximations of consistent query answering for robust ontology-based data access. In: Proceedings of IJCAI, pp. 775–781 (2013)

    Google Scholar 

  13. Calì, A., Gottlob, G., Kifer, M.: Taming the infinite chase: query answering under expressive relational constraints. In: Proceedings of the International Conference on Principles of Knowledge Representation and Reasoning (KR), pp. 70–80 (2008)

    Google Scholar 

  14. Calì, A., Gottlob, G., Kifer, M.: Taming the infinite chase: query answering under expressive relational constraints. J. Artif. Intell. Res. (JAIR) 48, 115–174 (2013)

    Article  MathSciNet  Google Scholar 

  15. Calì, A., Gottlob, G., Lukasiewicz, T.: A general Datalog-based framework for tractable query answering over ontologies. In: Proceedings of the ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems (PODS), pp. 77–86 (2009)

    Google Scholar 

  16. Calì, A., Gottlob, G., Pieris, A.: Towards more expressive ontology languages: the query answering problem. Artif. Intell. J. (AIJ) 193, 87–128 (2012)

    Article  MathSciNet  Google Scholar 

  17. Calì, A., Gottlob, G., Lukasiewicz, T.: A general Datalog-based framework for tractable query answering over ontologies. J. Web Sem. 14, 57–83 (2012)

    Article  Google Scholar 

  18. Ceylan, İ.İ., Borgwardt, S., Lukasiewicz, T.: Most probable explanations for probabilistic database queries. In: Proceedings of IJCAI, pp. 950–956 (2017)

    Google Scholar 

  19. Chandra, A.K., Merlin, P.M.: Optimal implementation of conjunctive queries in relational data bases. In: Proceedings of the ACM Symposium on Theory of Computing (STOC), pp. 77–90 (1977)

    Google Scholar 

  20. Deagustini, C.A.D., Martínez, M.V., Falappa, M.A., Simari, G.R.: Improving inconsistency resolution by considering global conflicts. In: Straccia, U., Calì, A. (eds.) SUM 2014. LNCS (LNAI), vol. 8720, pp. 120–133. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11508-5_11

    Chapter  Google Scholar 

  21. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and \(n\)-person games. Artif. Intell. 77, 321–357 (1995)

    Article  MathSciNet  Google Scholar 

  22. Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: semantics and query answering. In: Calvanese, D., Lenzerini, M., Motwani, R. (eds.) ICDT 2003. LNCS, vol. 2572, pp. 207–224. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36285-1_14

    Chapter  Google Scholar 

  23. Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: semantics and query answering. Theoret. Comput. Sci. 336(1), 89–124 (2005)

    Article  MathSciNet  Google Scholar 

  24. Falappa, M.A., Kern-Isberner, G., Simari, G.R.: Explanations, belief revision and defeasible reasoning. Artif. Intell. 141(1–2), 1–28 (2002)

    Article  MathSciNet  Google Scholar 

  25. García, A.J., Simari, G.R.: Defeasible logic programming: delp-servers, contextual queries, and explanations for answers. Argument Comput. 5(1), 63–88 (2014)

    Article  Google Scholar 

  26. García, A.J., Simari, G.R.: Defeasible logic programming: an argumentative approach. TPLP 4(1–2), 95–138 (2004)

    MathSciNet  MATH  Google Scholar 

  27. Gottlob, G., Manna, M., Pieris, A.: Combining decidability paradigms for existential rules. Theory Practice Logic Program. (TPLP) 13(4–5), 877–892 (2013)

    Article  MathSciNet  Google Scholar 

  28. Gottlob, G., Orsi, G., Pieris, A., Šimkus, M.: Datalog and its extensions for semantic web databases. In: Eiter, T., Krennwallner, T. (eds.) Reasoning Web 2012. LNCS, vol. 7487, pp. 54–77. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33158-9_2

    Chapter  MATH  Google Scholar 

  29. Gottlob, G., Lukasiewicz, T., Martinez, M.V., Simari, G.I.: Query answering under probabilistic uncertainty in datalog+/- ontologies. Ann. Math. Artif. Intell. 69(1), 37–72 (2013)

    Article  MathSciNet  Google Scholar 

  30. Grover, S., Pulice, C., Simari, G.I., Subrahmanian, V.S.: BEEF: balanced English explanations of forecasts. IEEE Trans. Comput. Soc. Syst. 6(2), 350–364 (2019)

    Article  Google Scholar 

  31. Hansson, S.O.: Semi-revision. J. Appl. Non-Classical Logic 7, 151–175 (1997)

    Article  MathSciNet  Google Scholar 

  32. Lembo, D., Lenzerini, M., Rosati, R., Ruzzi, M., Savo, D.F.: Inconsistency-tolerant semantics for description logics. In: Hitzler, P., Lukasiewicz, T. (eds.) RR 2010. LNCS, vol. 6333, pp. 103–117. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15918-3_9

    Chapter  Google Scholar 

  33. Leone, N., Manna, M., Terracina, G., Veltri, P.: Efficiently computable Datalog programs. In: Proceedings of the International Conference on Principles of Knowledge Representation and Reasoning (KR), pp. 13–23 (2012)

    Google Scholar 

  34. Lukasiewicz, T., Martinez, M.V., Orsi, G., Simari, G.I.: Heuristic ranking in tightly coupled probabilistic description logics. In: Proceedings of UAI 2012, pp. 554–563 (2012)

    Google Scholar 

  35. Lukasiewicz, T., Martinez, M.V., Orsi, G., Simari, G.I.: Exact and approximate query answering in tightly coupled probabilistic datalog+/-. Forthcoming (2019)

    Google Scholar 

  36. Lukasiewicz, T., Martinez, M.V., Simari, G.I.: Inconsistency handling in Datalog+/- ontologies. In: Proceedings of ECAI, pp. 558–563 (2012)

    Google Scholar 

  37. Martinez, M.V., Deagustini, C.A.D., Falappa, M.A., Simari, G.R.: Inconsistency-tolerant reasoning in datalog\(^{\pm }\) ontologies via an argumentative semantics. In: Bazzan, A.L.C., Pichara, K. (eds.) IBERAMIA 2014. LNCS (LNAI), vol. 8864, pp. 15–27. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12027-0_2

    Chapter  Google Scholar 

  38. Martinez, M.V., Pugliese, A., Simari, G.I., Subrahmanian, V.S., Prade, H.: How dirty is your relational database? An axiomatic approach. In: Proceedings of ECSQARU, pp. 103–114 (2007)

    Google Scholar 

  39. Milani, M., Bertossi, L.: Tractable query answering and optimization for extensions of weakly-sticky Datalog+/-. arXiv:1504.03386 (2015)

  40. Miller, T.: Explanation in artificial intelligence: insights from the social sciences. Artif. Intell. 267, 1–38 (2019)

    Article  MathSciNet  Google Scholar 

  41. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference (1988)

    Chapter  Google Scholar 

  42. Poole, D.: The independent choice logic for modelling multiple agents under uncertainty. Artif. Intell. 94(1–2), 7–56 (1997)

    Article  MathSciNet  Google Scholar 

  43. Ribeiro, M.M., Wassermann, R.: Minimal change in AGM revision for non-classical logics. In: Principles of Knowledge Representation and Reasoning: Proceedings of the Fourteenth International Conference, KR 2014, 20–24 July 2014, Vienna, Austria (2014)

    Google Scholar 

  44. Richardson, A., Rosenfeld, A.: A survey of interpretability and explainability in human-agent systems. In: XAI Workshop on Explainable Artificial Intelligence, pp. 137–143 (2018)

    Google Scholar 

  45. Richardson, M., Domingos, P.: Markov logic networks. Mach. Learn. 62, 107–136 (2006)

    Article  Google Scholar 

  46. Shortliffe, E.H., Davis, R., Axline, S.G., Buchanan, B.G., Green, C.C., Cohen, S.N.: Computer-based consultations in clinical therapeutics: explanation and rule acquisition capabilities of the mycin system. Comput. Biomed. Res. 8(4), 303–320 (1975)

    Article  Google Scholar 

  47. Simari, G.I., Molinaro, C., Martinez, M.V., Lukasiewicz, T., Predoiu, L.: Ontology-Based Data Access Leveraging Subjective Reports. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-319-65229-0

    Book  Google Scholar 

  48. Tifrea-Marciuska, O.: Personalised search for the social semantic web. Ph.D. thesis, Department of Computer Science, University of Oxford (2016)

    Google Scholar 

  49. Vardi, M.Y.: The complexity of relational query languages (extended abstract). In: Proceedings of the ACM Symposium on Theory of Computing (STOC), pp. 137–146 (1982)

    Google Scholar 

  50. Wainwright, M.J., Jordan, M.I., et al.: Graphical models, exponential families, and variational inference. Found. Trends® Mach. Learn. 1(1–2), 1–305 (2008)

    Article  Google Scholar 

  51. Wang, S., Pan, J.Z., Zhao, Y., Li, W., Han, S., Han, D.: Belief base revision for datalog+/- ontologies. In: Kim, W., Ding, Y., Kim, H.-G. (eds.) JIST 2013. LNCS, vol. 8388, pp. 175–186. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06826-8_14

    Chapter  Google Scholar 

  52. Wassermann, R.: An algorithm for belief revision. In: Proceedings of the Seventh International Conference Principles of Knowledge Representation and Reasoning, KR 2000, 11–15 April 2000, Breckenridge, Colorado, USA, pp. 345–352 (2000)

    Google Scholar 

  53. White, C.C.: A survey on the integration of decision analysis and expert systems for decision support. IEEE Trans. Syst. Man Cybern. 20(2), 358–364 (1990)

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by funds provided by CONICET, Agencia Nacional de Promoción Científica y Tecnológica, Universidad Nacional del Sur (UNS), Argentina, and by the EU H2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement 690974 for the project “MIREL: MIning and REasoning with Legal texts”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Vanina Martinez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Martinez, M.V., Simari, G.I. (2019). Explanation-Friendly Query Answering Under Uncertainty. In: Krötzsch, M., Stepanova, D. (eds) Reasoning Web. Explainable Artificial Intelligence. Lecture Notes in Computer Science(), vol 11810. Springer, Cham. https://doi.org/10.1007/978-3-030-31423-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31423-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31422-4

  • Online ISBN: 978-3-030-31423-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics