Abstract
With the ever growing deployments of fingerprint recognition systems, presentation attack detection has become the new bottleneck. In order to make full use of the difference in materials between the fake fingerprint and the real fingerprint, we proposed to utilize two images of a finger for classification. A pair of fingerprints are first aligned using a deformable registration algorithm and then are fed into MobileNet-v2 networks to perform the classification. Experimental results on the public dataset LivDet 2011 show that the performance of the proposed approach is promising and prove the effectiveness of fusing two fingerprints rather than using the fingerprints separately.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Marcel, S., Nixon, M.S., Fierrez, J., Evans, N. (eds.): Handbook of Biometric Anti-Spoofing. ACVPR. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-92627-8
Lapsley, P., Less, J., Pare, D., Hoffman, N.: Anti-fraud biometric sensor that accurately detects blood flow (1998)
Baldisserra, D., Franco, A., Maio, D., Maltoni, D.: Fake fingerprint detection by odor analysis. In: Zhang, D., Jain, A.K. (eds.) ICB 2006. LNCS, vol. 3832, pp. 265–272. Springer, Heidelberg (2005). https://doi.org/10.1007/11608288_36
Martinsen, O.G., Clausen, S., Nysather, J.B., Grimmes, S.: Utilizing characteristic electrical properties of the epidermal skin layers to detect fake fingers in biometric fingerprint systems-a pilot study. IEEE Trans. Biomed. Eng. 54, 891–894 (2007)
Engelsma, J.J., Kai, C., Jain, A.K.: RaspiReader: open source fingerprint reader. IEEE Trans. Pattern Anal. Mach. Intell. PP(99), 1–1 (2017)
Jain, A.K., Prabhakar, S., Hong, L., Pankanti, S.: Filterbank-based fingerprint matching. IEEE Trans. Image Process. 9(5), 846–859 (2000)
Jain, A., Ross, A., Prabhakar, S.: Fingerprint matching using minutiae and texture features. In: 2001 Proceedings of the 2001 International Conference on Image Processing, vol. 3, pp 282–285. IEEE (2001)
Nogueira, R.F., de Alencar Lotufo, R., Machado, R.: Fingerprint liveness detection using convolutional neural networks. IEEE Trans. Inf. Forensics Secur. 11(6), 1206–1213C (2016)
Gottschlich, C.: Convolution comparison pattern: an efficient local image descriptor for fingerprint liveness detection. PLoS ONE 11(2), e0148,552 (2016)
Kim, S., Park, B., Song, B.S., Yang, S.: Deep belief network based statistical feature learning for fingerprint liveness detection. Pattern Recognit. Lett. 77, 58–65 (2016)
Chugh, T., Cao, K., Jain, A.K.: Fingerprint spoof buster: use of minutiae-centered patches. IEEE Trans. Inf. Forensics Secur. 13(9), 2190–2202 (2018)
Engelsma, J.J., Arora, S.S., Jain, A.K., Paulter, N.: Universal 3D wearable fingerprint targets: advancing fingerprint reader evaluations. IEEE Trans. Inf. Forensics Secur. (2018). https://doi.org/10.1109/TIFS.2018.2797000
Zhang, Y., Tian, J., Chen, X., Yang, X., Shi, P.: Fake finger detection based on thin-plate spline distortion model. In: Lee, S.-W., Li, S.Z. (eds.) ICB 2007. LNCS, vol. 4642, pp. 742–749. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74549-5_78
Antonelli, A., Cappelli, R., Maio, D., Maltoni, D.: A new approach to fake finger detection based on skin distortion. In: Zhang, D., Jain, A.K. (eds.) ICB 2006. LNCS, vol. 3832, pp. 221–228. Springer, Heidelberg (2005). https://doi.org/10.1007/11608288_30
Bao, W., Li, H., Li, N., et al.: A liveness detection method for face recognition based on optical flow field. In: IEEE International Conference on Image Analysis and Signal Processing (2009)
Cui, Z., Feng, J., Li, S., Lu, J., Zhou, J.: 2-D phase demodulation for deformable fingerprint registration. IEEE Trans. Inf. Forensics Secur. 13(12), 3153–3165 (2018)
Sandler, M., Howard, A., Zhu, M., et al.: MobileNetV2: Inverted Residuals and Linear Bottlenecks (2018)
Yambay, D., Ghiani, L., Denti, P., Marcialis, G.L., Roli, F., Schuckers, S.: LivDet 2011–Fingerprint liveness detection competition 2011. In: Proceedings 5th IAPR ICB, pp. 208–215 (2012)
Acknowledgments
This work is supported by the National Natural Science Foundation of China under Grants 61622207, 61527808, and Shenzhen fundamental research fund (subject arrangement) (Grant No. JCYJ20170412170438636).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Zhang, M., Feng, J., Zhou, J. (2019). Fingerprint Presentation Attack Detection via Analyzing Fingerprint Pairs. In: Sun, Z., He, R., Feng, J., Shan, S., Guo, Z. (eds) Biometric Recognition. CCBR 2019. Lecture Notes in Computer Science(), vol 11818. Springer, Cham. https://doi.org/10.1007/978-3-030-31456-9_2
Download citation
DOI: https://doi.org/10.1007/978-3-030-31456-9_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-31455-2
Online ISBN: 978-3-030-31456-9
eBook Packages: Computer ScienceComputer Science (R0)