Skip to main content

Combining Local Search and Elicitation for Multi-Objective Combinatorial Optimization

  • Conference paper
  • First Online:
Algorithmic Decision Theory (ADT 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11834))

Included in the following conference series:

  • 598 Accesses

Abstract

In this paper, we propose a general approach based on local search and incremental preference elicitation for solving multi-objective combinatorial optimization problems with imprecise preferences. We assume that the decision maker’s preferences over solutions can be represented by a parameterized scalarizing function but the parameters are initially not known. In our approach, the parameter imprecision is progressively reduced by iteratively asking preference queries to the decision maker (1) before the local search in order to identify a promising starting solution and (2) during the local search but only when preference information are needed to discriminate between the solutions within a neighborhood. This new approach is general in the sense that it can be applied to any multi-objective combinatorial optimization problem provided that the scalarizing function is linear in its parameters (e.g., a weighted sum, an OWA aggregator, a Choquet integral) and that a (near-)optimal solution can be efficiently determined when preferences are precisely known. For the multi-objective traveling salesman problem, we provide numerical results obtained with different query generation strategies to show the practical efficiency of our approach in terms of number of queries, computation time and gap to optimality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Note that \(PMR(x,x',\varOmega _\varTheta )\) values can be computed using a LP solver since \(\varOmega _\varTheta \) is described by linear constraints and \(f_\omega \) is linear in its parameters \(\omega \).

  2. 2.

    https://eden.dei.uc.pt/~paquete/tsp/.

  3. 3.

    PMRs values are computed using CPLEX Optimizer (https://www.ibm.com/analytics/cplex-optimizer) and the optimization part of Select&Optimize is performed by the exact TSP solver Concorde (http://www.math.uwaterloo.ca/tsp/concorde).

References

  1. Benabbou, N., Perny, P.: Incremental weight elicitation for multiobjective state space search. In: Proceedings of AAAI 2015, pp. 1093–1098 (2015)

    Google Scholar 

  2. Benabbou, N., Perny, P.: On possibly optimal tradeoffs in multicriteria spanning tree problems. In: Proceedings of ADT 2015, pp. 322–337 (2015)

    Chapter  Google Scholar 

  3. Benabbou, N., Perny, P.: Solving multi-agent knapsack problems using incremental approval voting. In: Proceedings of ECAI 2016, pp. 1318–1326 (2016)

    Google Scholar 

  4. Benabbou, N., Perny, P.: Interactive resolution of multiobjective combinatorial optimization problems by incremental elicitation of criteria weights. EURO J. Decis. Processes 6 (3), 283–319 (2018)

    Article  Google Scholar 

  5. Benabbou, N., Perny, P., Viappiani, P.: Incremental elicitation of Choquet capacities for multicriteria choice, ranking and sorting problems. Artif. Intell. 246 , 152–180 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bourdache, N., Perny, P.: Active preference elicitation based on generalized Gini functions: application to the multiagent knapsack problem. In: Proceedings of AAAI 2019 (2019)

    Google Scholar 

  7. Boutilier, C., Patrascu, R., Poupart, P., Schuurmans, D.: Constraint-based optimization and utility elicitation using the minimax decision criterion. Artif. Intell. 170 (8–9), 686–713 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Braziunas, D., Boutilier, C.: Minimax regret based elicitation of generalized additive utilities. In: Proceedings of UAI 2007, pp. 25–32 (2007)

    Google Scholar 

  9. Eric, B., Freitas, N.D., Ghosh, A.: Active preference learning with discrete choice data. In: Advances in Neural Information Processing Systems, pp. 409–416 (2008)

    Google Scholar 

  10. Chajewska, U., Koller, D., Parr, R.: Making rational decisions using adaptive utility elicitation. In: Proceedings of AAAI 2000, pp. 363–369 (2000)

    Google Scholar 

  11. Choquet, G.: Theory of capacities. Annales de l’Institut Fourier 5 , 31–295 (1953)

    MathSciNet  Google Scholar 

  12. Croes, G.A.: A method for solving traveling-salesman problems. Oper. Res. 6 (6), 791–812 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  13. Drummond, J., Boutilier, C.: Preference elicitation and interview minimization in stable matchings. In: Proceedings of AAAI 2014, pp. 645–653 (2014)

    Google Scholar 

  14. Fürnkranz, J., Hüllermeier, E.: Preference Learning. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14125-6

    Book  MATH  Google Scholar 

  15. Gelain, M., Pini, M.S., Rossi, F., Venable, K.B., Walsh, T.: Elicitation strategies for soft constraint problems with missing preferences: properties, algorithms and experimental studies. Artif. Intell. 174 (3), 270–294 (2010)

    Article  MathSciNet  Google Scholar 

  16. Grabisch, M., Labreuche, C.: A decade of application of the Choquet and Sugeno integrals in multi-criteria decision aid. Ann. Oper. Res. 175 (1), 247–286 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ha, V., Haddawy, P.: Problem-focused incremental elicitation of multi-attribute utility models. In: Proceedings of UAI 1997, pp. 215–222. Morgan Kaufmann Publishers Inc. (1997)

    Google Scholar 

  18. Hamacher, H.W., Ruhe, G.: On spanning tree problems with multiple objectives. Ann. Oper. Res. 52 , 209–230 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kaddani, S., Vanderpooten, D., Vanpeperstraete, J.-M., Aissi, H.: Weighted sum model with partial preference information: application to multi-objective optimization. Eur. J. Oper. Res. 260 , 665–679 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Karasakal, E., Köksalan, M.: Generating a representative subset of the nondominated frontier in multiple criteria decision making. Oper. Res. 57 (1), 187–199 (2009)

    Article  MATH  Google Scholar 

  21. Laumanns, M., Thiele, L., Deb, K., Zitzler, E.: Combining convergence and diversity in evolutionary multiobjective optimization. Evol. Comput. 10 (3), 263–282 (2002)

    Article  Google Scholar 

  22. Lesca, J., Perny, P.: LP solvable models for multiagent fair allocation problems. ECAI 2010 , 393–398 (2010)

    MATH  Google Scholar 

  23. Lu, T., Boutilier, C.: Robust approximation and incremental elicitation in voting protocols. IJCAI 2011 , 287–293 (2011)

    Google Scholar 

  24. Monnot, J., Paschos, V.T., Toulouse, S.: Approximation algorithms for the traveling salesman problem. Math. Methods Oper. Res. 56 (3), 387–405 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ogryczak, W., Śliwiński, T.: On solving linear programs with the ordered weighted averaging objective. Eur. J. Oper. Res. 148 (1), 80–91 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. Perny, P., Viappiani, P., Boukhatem, A.: Incremental preference elicitation for decision making under risk with the rank-dependent utility model. In: Proceedings of UAI, pp. 597–606 (2016)

    Google Scholar 

  27. Prim, R.C.: Shortest connection networks and some generalizations. Bell Syst. Tech. J. 36 , 1389–1401 (1957)

    Article  Google Scholar 

  28. Regan, K., Boutilier, C.: Eliciting additive reward functions for Markov decision processes. In: Proceedings of IJCAI 2011, pp. 2159–2164 (2011)

    Google Scholar 

  29. Rubinstein, R.Y.: Generating random vectors uniformly distributed inside and on the surface of different regions. Eur. J. Oper. Res. 10 (2), 205–209 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  30. Salo, A., Hämäläinen, R.P.: Preference ratios in multiattribute evaluation (prime)-elicitation and decision procedures under incomplete information. IEEE Trans. Syst. Man Cybern. Part A 31 (6), 533–545 (2001)

    Article  Google Scholar 

  31. Tehrani, A.F., Cheng, W., Dembczyński, K., Hüllermeier, E.: Learning monotone nonlinear models using the Choquet integral. Mach. Learn. 89 (1–2), 183–211 (2012)

    MathSciNet  MATH  Google Scholar 

  32. Wang, T., Boutilier, C.: Incremental utility elicitation with the minimax regret decision criterion, pp. 309–316 (2003)

    Google Scholar 

  33. Weng, P., Zanuttini, B.: Interactive value iteration for Markov decision processes with unknown rewards. In: Proceedings of IJCAI 2013, pp. 2415–2421 (2013)

    Google Scholar 

  34. White, C.C., Sage, A.P., Dozono, S.: A model of multiattribute decisionmaking and trade-off weight determination under uncertainty. IEEE Trans. Syst. Man Cybern. 14 (2), 223–229 (1984)

    Article  MathSciNet  Google Scholar 

  35. Yager, R.R.: On ordered weighted averaging aggregation operators in multicriteria decision making. IEEE Trans. Syst. Man Cybern. 18 (1), 183–190 (1988)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thibaut Lust .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Benabbou, N., Leroy, C., Lust, T., Perny, P. (2019). Combining Local Search and Elicitation for Multi-Objective Combinatorial Optimization. In: Pekeč, S., Venable, K.B. (eds) Algorithmic Decision Theory. ADT 2019. Lecture Notes in Computer Science(), vol 11834. Springer, Cham. https://doi.org/10.1007/978-3-030-31489-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31489-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31488-0

  • Online ISBN: 978-3-030-31489-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics