Abstract
In this paper, we propose a general approach based on local search and incremental preference elicitation for solving multi-objective combinatorial optimization problems with imprecise preferences. We assume that the decision maker’s preferences over solutions can be represented by a parameterized scalarizing function but the parameters are initially not known. In our approach, the parameter imprecision is progressively reduced by iteratively asking preference queries to the decision maker (1) before the local search in order to identify a promising starting solution and (2) during the local search but only when preference information are needed to discriminate between the solutions within a neighborhood. This new approach is general in the sense that it can be applied to any multi-objective combinatorial optimization problem provided that the scalarizing function is linear in its parameters (e.g., a weighted sum, an OWA aggregator, a Choquet integral) and that a (near-)optimal solution can be efficiently determined when preferences are precisely known. For the multi-objective traveling salesman problem, we provide numerical results obtained with different query generation strategies to show the practical efficiency of our approach in terms of number of queries, computation time and gap to optimality.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Note that \(PMR(x,x',\varOmega _\varTheta )\) values can be computed using a LP solver since \(\varOmega _\varTheta \) is described by linear constraints and \(f_\omega \) is linear in its parameters \(\omega \).
- 2.
- 3.
PMRs values are computed using CPLEX Optimizer (https://www.ibm.com/analytics/cplex-optimizer) and the optimization part of Select&Optimize is performed by the exact TSP solver Concorde (http://www.math.uwaterloo.ca/tsp/concorde).
References
Benabbou, N., Perny, P.: Incremental weight elicitation for multiobjective state space search. In: Proceedings of AAAI 2015, pp. 1093–1098 (2015)
Benabbou, N., Perny, P.: On possibly optimal tradeoffs in multicriteria spanning tree problems. In: Proceedings of ADT 2015, pp. 322–337 (2015)
Benabbou, N., Perny, P.: Solving multi-agent knapsack problems using incremental approval voting. In: Proceedings of ECAI 2016, pp. 1318–1326 (2016)
Benabbou, N., Perny, P.: Interactive resolution of multiobjective combinatorial optimization problems by incremental elicitation of criteria weights. EURO J. Decis. Processes 6 (3), 283–319 (2018)
Benabbou, N., Perny, P., Viappiani, P.: Incremental elicitation of Choquet capacities for multicriteria choice, ranking and sorting problems. Artif. Intell. 246 , 152–180 (2017)
Bourdache, N., Perny, P.: Active preference elicitation based on generalized Gini functions: application to the multiagent knapsack problem. In: Proceedings of AAAI 2019 (2019)
Boutilier, C., Patrascu, R., Poupart, P., Schuurmans, D.: Constraint-based optimization and utility elicitation using the minimax decision criterion. Artif. Intell. 170 (8–9), 686–713 (2006)
Braziunas, D., Boutilier, C.: Minimax regret based elicitation of generalized additive utilities. In: Proceedings of UAI 2007, pp. 25–32 (2007)
Eric, B., Freitas, N.D., Ghosh, A.: Active preference learning with discrete choice data. In: Advances in Neural Information Processing Systems, pp. 409–416 (2008)
Chajewska, U., Koller, D., Parr, R.: Making rational decisions using adaptive utility elicitation. In: Proceedings of AAAI 2000, pp. 363–369 (2000)
Choquet, G.: Theory of capacities. Annales de l’Institut Fourier 5 , 31–295 (1953)
Croes, G.A.: A method for solving traveling-salesman problems. Oper. Res. 6 (6), 791–812 (1958)
Drummond, J., Boutilier, C.: Preference elicitation and interview minimization in stable matchings. In: Proceedings of AAAI 2014, pp. 645–653 (2014)
Fürnkranz, J., Hüllermeier, E.: Preference Learning. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14125-6
Gelain, M., Pini, M.S., Rossi, F., Venable, K.B., Walsh, T.: Elicitation strategies for soft constraint problems with missing preferences: properties, algorithms and experimental studies. Artif. Intell. 174 (3), 270–294 (2010)
Grabisch, M., Labreuche, C.: A decade of application of the Choquet and Sugeno integrals in multi-criteria decision aid. Ann. Oper. Res. 175 (1), 247–286 (2010)
Ha, V., Haddawy, P.: Problem-focused incremental elicitation of multi-attribute utility models. In: Proceedings of UAI 1997, pp. 215–222. Morgan Kaufmann Publishers Inc. (1997)
Hamacher, H.W., Ruhe, G.: On spanning tree problems with multiple objectives. Ann. Oper. Res. 52 , 209–230 (1994)
Kaddani, S., Vanderpooten, D., Vanpeperstraete, J.-M., Aissi, H.: Weighted sum model with partial preference information: application to multi-objective optimization. Eur. J. Oper. Res. 260 , 665–679 (2017)
Karasakal, E., Köksalan, M.: Generating a representative subset of the nondominated frontier in multiple criteria decision making. Oper. Res. 57 (1), 187–199 (2009)
Laumanns, M., Thiele, L., Deb, K., Zitzler, E.: Combining convergence and diversity in evolutionary multiobjective optimization. Evol. Comput. 10 (3), 263–282 (2002)
Lesca, J., Perny, P.: LP solvable models for multiagent fair allocation problems. ECAI 2010 , 393–398 (2010)
Lu, T., Boutilier, C.: Robust approximation and incremental elicitation in voting protocols. IJCAI 2011 , 287–293 (2011)
Monnot, J., Paschos, V.T., Toulouse, S.: Approximation algorithms for the traveling salesman problem. Math. Methods Oper. Res. 56 (3), 387–405 (2003)
Ogryczak, W., Śliwiński, T.: On solving linear programs with the ordered weighted averaging objective. Eur. J. Oper. Res. 148 (1), 80–91 (2003)
Perny, P., Viappiani, P., Boukhatem, A.: Incremental preference elicitation for decision making under risk with the rank-dependent utility model. In: Proceedings of UAI, pp. 597–606 (2016)
Prim, R.C.: Shortest connection networks and some generalizations. Bell Syst. Tech. J. 36 , 1389–1401 (1957)
Regan, K., Boutilier, C.: Eliciting additive reward functions for Markov decision processes. In: Proceedings of IJCAI 2011, pp. 2159–2164 (2011)
Rubinstein, R.Y.: Generating random vectors uniformly distributed inside and on the surface of different regions. Eur. J. Oper. Res. 10 (2), 205–209 (1982)
Salo, A., Hämäläinen, R.P.: Preference ratios in multiattribute evaluation (prime)-elicitation and decision procedures under incomplete information. IEEE Trans. Syst. Man Cybern. Part A 31 (6), 533–545 (2001)
Tehrani, A.F., Cheng, W., Dembczyński, K., Hüllermeier, E.: Learning monotone nonlinear models using the Choquet integral. Mach. Learn. 89 (1–2), 183–211 (2012)
Wang, T., Boutilier, C.: Incremental utility elicitation with the minimax regret decision criterion, pp. 309–316 (2003)
Weng, P., Zanuttini, B.: Interactive value iteration for Markov decision processes with unknown rewards. In: Proceedings of IJCAI 2013, pp. 2415–2421 (2013)
White, C.C., Sage, A.P., Dozono, S.: A model of multiattribute decisionmaking and trade-off weight determination under uncertainty. IEEE Trans. Syst. Man Cybern. 14 (2), 223–229 (1984)
Yager, R.R.: On ordered weighted averaging aggregation operators in multicriteria decision making. IEEE Trans. Syst. Man Cybern. 18 (1), 183–190 (1988)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Benabbou, N., Leroy, C., Lust, T., Perny, P. (2019). Combining Local Search and Elicitation for Multi-Objective Combinatorial Optimization. In: Pekeč, S., Venable, K.B. (eds) Algorithmic Decision Theory. ADT 2019. Lecture Notes in Computer Science(), vol 11834. Springer, Cham. https://doi.org/10.1007/978-3-030-31489-7_1
Download citation
DOI: https://doi.org/10.1007/978-3-030-31489-7_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-31488-0
Online ISBN: 978-3-030-31489-7
eBook Packages: Computer ScienceComputer Science (R0)