Skip to main content

On the Statistical Detection of Adversarial Instances over Encrypted Data

  • Conference paper
  • First Online:
Security and Trust Management (STM 2019)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11738))

Included in the following conference series:

Abstract

Adversarial instances are malicious inputs designed to fool machine learning models. In particular, motivated and sophisticated attackers intentionally design adversarial instances to evade classifiers which have been trained to detect security violation, such as malware detection. While the existing approaches provide effective solutions in detecting and defending adversarial samples, they fail to detect them when they are encrypted. In this study, a novel framework is proposed which employs statistical test to detect adversarial instances, when data under analysis are encrypted. An experimental evaluation of our approach shows its practical feasibility in terms of computation cost.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.eugdpr.org/.

  2. 2.

    https://www.pcisecuritystandards.org/.

  3. 3.

    https://www.hhs.gov/hipaa.

References

  1. Srndic, N., Laskov, P.: Practical evasion of a learning-based classifier: a case study. In: Proceedings of the 2014 IEEE Symposium on Security and Privacy, SP 2014, pp. 197–211, IEEE Computer Society, Washington, DC (2014)

    Google Scholar 

  2. Lowd, D.: Good word attacks on statistical spam filters. In: Proceedings of the Second Conference on Email and Anti-Spam (CEAS) (2005)

    Google Scholar 

  3. Maiorca, D., Corona, I., Giacinto, G.: Looking at the bag is not enough to find the bomb: an evasion of structural methods for malicious PDF files detection. In: Proceedings of the 8th ACM SIGSAC Symposium on Information, Computer and Communications Security, ASIA CCS 2013, pp. 119–130. ACM, New York (2013)

    Google Scholar 

  4. Elsayed, G.F., et al.: Adversarial examples that fool both human and computer vision, CoRR abs/1802.08195 (2018)

    Google Scholar 

  5. Szegedy, C., et al.: Intriguing properties of neural networks, CoRR abs1312.6199 (2013)

    Google Scholar 

  6. Lu, J., Sibai, H., Fabry, E., Forsyth, D.A.: No need to worry about adversarial examples in object detection in autonomous vehicles, CoRR abs/1707.03501 (2017)

    Google Scholar 

  7. Fawzi, A., Fawzi, O., Frossard, P.: Analysis of classifiers’ robustness to adversarial perturbations. Mach. Learn. 107(3), 481–508 (2018)

    Article  MathSciNet  Google Scholar 

  8. Biggio, B., et al.: Evasion attacks against machine learning at test time. In: Blockeel, H., Kersting, K., Nijssen, S., Železný, F. (eds.) ECML PKDD 2013, Part III. LNCS (LNAI), vol. 8190, pp. 387–402. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40994-3_25

    Chapter  Google Scholar 

  9. Papernot, N., McDaniel, P.D., Wu, X., Jha, S., Swami, A.: Distillation as a defense to adversarial perturbations against deep neural networks, CoRR abs1511.04508 (2016)

    Google Scholar 

  10. Grosse, K., Manoharan, P., Papernot, N., Backes, M., McDaniel, P.D.: On the (statistical) detection of adversarial examples, CoRR abs1702.06280 (2017)

    Google Scholar 

  11. Potey, M.M., Dhote, C., Sharma, D.H.: Homomorphic encryption for security of cloud data. Procedia Comput. Sci. 79, 175–181 (2016). Proceedings of International Conference on Communication, Computing and Virtualization (ICCCV) 2016

    Article  Google Scholar 

  12. Gretton, A., Borgwardt, K.M., Rasch, M.J., Scholkopf, B., Smola, A.: A kernel two-sample test. J. Mach. Learn. Res. 13, 723–773 (2012)

    MathSciNet  MATH  Google Scholar 

  13. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_16

    Chapter  Google Scholar 

  14. Nateghizad, M., Erkin, Z., Lagendijk, R.L.: An efficient privacy-preserving comparison protocol in smart metering systems. EURASIP J. Inf. Secur. (1), 11 (2016)

    Google Scholar 

  15. Erkin, Z., Franz, M., Guajardo, J., Katzenbeisser, S., Lagendijk, I., Toft, T.: Privacy-preserving face recognition. In: Goldberg, I., Atallah, M.J. (eds.) PETS 2009. LNCS, vol. 5672, pp. 235–253. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03168-7_14

    Chapter  Google Scholar 

  16. Sheikhalishahi, M., Saracino, A., Mejri, M., Tawbi, N., Martinelli, F.: Fast and effective clustering of spam emails based on structural similarity. In: Garcia-Alfaro, J., Kranakis, E., Bonfante, G. (eds.) FPS 2015. LNCS, vol. 9482, pp. 195–211. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30303-1_12

    Chapter  Google Scholar 

  17. Lindell, Y.: How to simulate it – a tutorial on the simulation proof technique. Tutorials on the Foundations of Cryptography. ISC, pp. 277–346. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57048-8_6

    Chapter  MATH  Google Scholar 

  18. Nateghizad, M., Erkin, Z., Lagendijk, R.L.: Efficient and secure equality tests. In: 2016 IEEE International Workshop on Information Forensics and Security (WIFS), pp. 1–6 (2016)

    Google Scholar 

  19. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2001, vol. 1 (2001)

    Google Scholar 

  20. Munoz-Gonzalez, L., et al.: Towards poisoning of deep learning algorithms with back-gradient optimization. In: Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security, AISec 2017, New York, NY, USA, pp. 27–38 (2017)

    Google Scholar 

  21. Biggio, B., Fumera, G., Roli, F.: Security evaluation of pattern classifiers under attack, CoRR abs/1709.00609 (2017)

    Google Scholar 

  22. Jordaney, R., et al.: Transcend: detecting concept drift in malware classification models. In: 26th USENIX Security Symposium, Vancouver, BC, pp. 625–642. USENIX Association (2017)

    Google Scholar 

  23. Bos, J.W., Lauter, K., Naehrig, M.: Private predictive analysis on encrypted medical data. J. Biomed. Inform. 50, 234–243 (2014)

    Article  Google Scholar 

  24. Sheikhalishahi, M., Martinelli, F.: Privacy preserving clustering over horizontal and vertical partitioned data. In: 2017 IEEE Symposium on Computers and Communications, ISCC 2017, Heraklion, Greece, 3–6 July 2017, pp. 1237–1244 (2017)

    Google Scholar 

  25. Bost, R. Popa, R.A., Tu, S., Goldwasser, S.: Machine learning classification over encrypted data. In: 22nd Annual Network and Distributed System Security Symposium, NDSS 2015, San Diego, California, USA, 8–11 February 2015 (2015)

    Google Scholar 

  26. Sheikhalishahi, M., Martinelli, F.: Privacy-utility feature selection as a tool in private data classification. Distributed Computing and Artificial Intelligence, 14th International Conference. AISC, vol. 620, pp. 254–261. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-62410-5_31

    Chapter  Google Scholar 

  27. Costantino, G., Marra, A.L., Martinelli, F., Saracino, A., Sheikhalishahi, M.: Privacy-preserving text mining as a service. In: 2017 IEEE Symposium on Computers and Communications, ISCC 2017, Heraklion, Greece, 3–6 July 2017, pp. 890–897 (2017)

    Google Scholar 

  28. Martinelli, F., Saracino, A., Sheikhalishahi, M.: Modeling privacy aware information sharing systems: a formal and general approach. In: 2016 IEEE Trustcom/BigDataSE/ISPA, Tianjin, China, 23–26 August 2016, pp. 767–774 (2016)

    Google Scholar 

Download references

Acknowledgment

This work was partially supported by the H2020 EU funded project SECREDAS [GA #783119] and by the H2020 EU funded project C3ISP [GA #700294].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mina Sheikhalishahi .

Editor information

Editors and Affiliations

Appendix

Appendix

In what follows we prove Theorem 1, claiming that if we set \(\alpha ' = \sqrt{ \alpha ^2- 2d \updelta }\) (for negligible \(\updelta \)), then from \(MMD'(D'_1, D'_2) \le \alpha '\) we can conclude that \(MMD(D_1, D_2) \le \alpha \).

Basically, we are looking for \(\alpha '\) such that if the following relation holds:

$$\begin{aligned} n^2 \sum _{i,j = 1}^{m} d^{n_{X_iX_j}} - 2 mn \sum _{i,j = 1}^{m , n } d^{n_{X_iY_j}} + m^2 \sum _{i,j = 1}^{n} d^{n_{Y_iY_j} } \le m^2n^2{\alpha '}^2 \end{aligned}$$

We can conclude that:

$$\begin{aligned} n^2 \sum _{i,j = 1}^{m} \kappa (X_i, X_j) - 2 mn \sum _{i,j = 1}^{m , n } \kappa (X_i, Y_j) + m^2 \sum _{i,j = 1}^{n} \kappa (Y_i, Y_j) \le m^2 n^2 \alpha ^2 \end{aligned}$$

To this end, we first find a relation between two above relations:

$$\begin{aligned}&n^2 \sum _{i,j = 1}^{m} \kappa (X_i, X_j) - 2 mn \sum _{i,j = 1}^{m , n } \kappa (X_i, Y_j) + m^2 \sum _{i,j = 1}^{n} \kappa (Y_i, Y_j) \\ \le&n^2 \sum _{i,j = 1}^{m} (d + \updelta )^{n_{X_iX_j}} - 2 mn \sum _{i,j = 1}^{m , n } d^{n_{X_iY_j}} + m^2 \sum _{i,j = 1}^{n} (d+ \updelta )^{n_{Y_iY_j} } \\&= n^2 (\sum _{i,j = 1}^{m} d^{n_{X_iX_j}} + \sum _{i,j = 1}^{m} [ \frac{n_{X_iX_j} (n_{X_iX_j} - 1) }{2} d^{n_{X_iX_j}-1} \updelta + \ldots ] ) - 2 mn \sum _{i,j = 1}^{m , n } d^{n_{X_iY_j}}\\&\quad + m^2 ( \sum _{i,j = 1}^{n} d^{n_{Y_iY_j}} + \sum _{i,j = 1}^{n} [ \frac{n_{Y_iY_j} (n_{Y_iY_j} - 1) }{2} d^{n_{Y_iY_j}-1} \updelta + \ldots ] ) \end{aligned}$$

From the application of binomial theorem, we obtain:

$$\begin{aligned}&(n^2 \sum _{i,j = 1}^{m} d^{n_{X_iX_j}} - 2 mn \sum _{i,j = 1}^{m , n } d^{n_{X_iY_j}} + m^2 \sum _{i,j = 1}^{n} d^{n_{Y_iY_j} } ) + ( n^2 \sum _{i,j = 1}^{m} [ \frac{n_{X_iX_j} (n_{X_iX_j} - 1) }{2} d^{n_{X_iX_j}-1} \updelta + \ldots ] \\&+ m^2 \sum _{i,j = 1}^{n} [ \frac{n_{Y_iY_j} (n_{Y_iY_j} - 1) }{2} d^{n_{Y_iY_j}-1} \updelta + \ldots ] ) \le m^2 n^2 \alpha ^2 \end{aligned}$$

This means that it is enough to set \({\alpha '}^2 = \alpha ^2 - 2 \updelta d\), because:

$$\begin{aligned} \Rightarrow \alpha '&= m^2 n^2 \alpha ^2 - ( n^2 \sum _{i,j = 1}^{m} [ \frac{n_{X_iX_j} (n_{X_iX_j} - 1) }{2} d^{n_{X_iX_j}-1} \updelta + \ldots ]\\&+ m^2 \sum _{i,j = 1}^{n} [ \frac{n_{Y_iY_j} (n_{Y_iY_j} - 1) }{2} d^{n_{Y_iY_j}-1} \updelta + \ldots ] ) \\&\le m^2 n^2 \alpha ^2 - ( n^2 \updelta \sum _{i,j = 1}^{m} d + m^2 \updelta \sum _{i,j = 1}^{n} d ) \\&\quad = m^2 n^2 \alpha ^2 - 2 m^2 n^2 \updelta d \end{aligned}$$

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sheikhalishahi, M., Nateghizad, M., Martinelli, F., Erkin, Z., Loog, M. (2019). On the Statistical Detection of Adversarial Instances over Encrypted Data. In: Mauw, S., Conti, M. (eds) Security and Trust Management. STM 2019. Lecture Notes in Computer Science(), vol 11738. Springer, Cham. https://doi.org/10.1007/978-3-030-31511-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31511-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31510-8

  • Online ISBN: 978-3-030-31511-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics