Abstract
Literal interpretation on laws may produce unexpected consequences. They are difficult to be recognized unless exceptional cases were taken to the court. The court may decide a literal interpretation as exceptional, and then they have to identify which rule is a source of exception.
To assist the court, we proposed an idea called legal debugging, to find out which rule condition, called a culprit, causes unexpected consequences in such exceptional cases. We adapt the algorithmic program debugging with consideration of characteristics in reasoning in judgement, such as non-recursive stratified structures and factual propositions in order to find a culprit at last.
This paper presents legal debugging in propositional Prolog as well as PROLEG (PROlog based LEGal reasoning support system) specialized for legal reasoning. An example of legal debugging that interacts with a user and finds a culprit is also shown under the PROLEG representation of the case adapted from the real Supreme Court case.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Sergot, M.J., Sadri, F., Kowalski, R.A., Kriwaczek, F., Hammond, P., Cory, H.T.: The British Nationality Act as a logic program. Commun. ACM 29, 370–386 (1986)
Sherman, D.M.: A Prolog model of the income tax act of Canada. In: Proceedings of the 1st International Conference on Artificial Intelligence and Law, pp. 127–136. ACM, New York (1987)
Li, T., Balke, T., De Vos, M., Satoh, K., Padget, J.: Detecting conflicts in legal systems. In: Motomura, Y., Butler, A., Bekki, D. (eds.) JSAI-isAI 2012. LNCS (LNAI), vol. 7856, pp. 174–189. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39931-2_13
Satoh, K., et al.: PROLEG: an implementation of the presupposed ultimate fact theory of Japanese civil code by PROLOG technology. In: Onada, T., Bekki, D., McCready, E. (eds.) JSAI-isAI 2010. LNCS (LNAI), vol. 6797, pp. 153–164. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25655-4_14
Ito, S.: Lecture Series on Ultimate Facts. Shojihomu (2008). (in Japanese)
Ullman, J.: Principles of Database and Knowledge-Base Systems. Computer Science Press, Rockville (1988)
Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: International Conference on Logic Programming/Joint International Conference and Symposium on Logic Programming, pp. 1070–1080 (1988)
Fages, F.: A new fixpoint semantics for general logic programs compared with the well-founded and the stable model semantics. New Gener. Comput. 9, 425–443 (1991)
Satoh, K., Kogawa, T., Okada, N., Omori, K., Omura, S., Tsuchiya, K.: On generality of PROLEG knowledge representation. In: Proceedings of the 6th International Workshop on Juris-informatics (JURISIN 2012), Miyazaki, Japan, pp. 115–128 (2012)
Tokyo High Court: Case to seek removal of a building and surrender of lands. 1994 (O) 693. Minshu, vol. 50, no. 9 (1996)
Syrjänen, T.: Debugging inconsistent answer set programs. In: Proceedings of the 11th International Workshop on Nonmonotonic Reasoning, pp. 77–83 (2006)
Caminada, M., Sakama, C.: On the existence of answer sets in normal extended logic programs. In: Proceedings of the 2006 Conference on ECAI 2006: 17th European Conference on Artificial Intelligence, Riva Del Garda, Italy, pp. 743–744. IOS Press, Amsterdam (2006)
Schulz, C., Satoh, K., Toni, F.: Characterising and explaining inconsistency in logic programs. In: Calimeri, F., Ianni, G., Truszczynski, M. (eds.) LPNMR 2015. LNCS (LNAI), vol. 9345, pp. 467–479. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23264-5_39
Ulbricht, M., Thimm, M., Brewka, G.: Measuring inconsistency in answer set programs. In: Michael, L., Kakas, A. (eds.) JELIA 2016. LNCS (LNAI), vol. 10021, pp. 577–583. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48758-8_42
Pontelli, E., Son, T.C., Elkhatib, O.: Justifications for logic programs under answer set semantics. Theor. Pr. Log. Program. 9, 1–56 (2009)
Gebser, M., Pührer, J., Schaub, T., Tompits, H.: A meta-programming technique for debugging answer-set programs. In: Proceedings of the 23rd National Conference on Artificial Intelligence – vol. 1, pp. 448–453. AAAI Press (2008)
Shapiro, E.Y.: Algorithmic Program Debugging. MIT Press, Cambridge (1983)
Caballero, R., Riesco, A., Silva, J.: A survey of algorithmic debugging. ACM Comput. Surv. 50, 60:1–60:35 (2017)
Zinn, C.: Algorithmic debugging for intelligent tutoring: How to use multiple models and improve diagnosis. In: Timm, I.J., Thimm, M. (eds.) KI 2013. LNCS (LNAI), vol. 8077, pp. 272–283. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40942-4_24
Kuchcinski, K., Drabent, W., Maluszynski, J.: Automatic diagnosis of VLSI digital circuits using algorithmic debugging. In: Fritzson, P.A. (ed.) AADEBUG 1993. LNCS, vol. 749, pp. 350–367. Springer, Heidelberg (1993). https://doi.org/10.1007/BFb0019419
Fandinno, J., Schulz, C.: Answering the “why” in answer set programming – a survey of explanation approaches. Theor. Pract. Log. Program. 19, 114–203 (2019)
Brain, M., De Vos, M.: Debugging logic programs under the answer set semantics. In: Answer Set Programming (2005)
Oetsch, J., Pührer, J., Tompits, H.: Catching the ouroboros: on debugging non-ground answer-set programs. Theor. Pract. Log. Program. 10, 513–529 (2010)
Oetsch, J., Pührer, J., Tompits, H.: Stepping through an answer-set program. In: Delgrande, J.P., Faber, W. (eds.) LPNMR 2011. LNCS (LNAI), vol. 6645, pp. 134–147. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20895-9_13
Caballero, R., García-Ruiz, Y., Sáenz-Pérez, F.: A theoretical framework for the declarative debugging of datalog programs. In: Schewe, K.D., Thalheim, B. (eds.) SDKB 2008. LNCS, vol. 4925, pp. 143–159. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88594-8_8
Acknowledgement
We appreciate Randy Goebel, Oliver Ray, and Tiago Oliveira for their comments on the paper. This research is partially supported by JSPS KAKENHI Grant No. 17H06103.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Fungwacharakorn, W., Satoh, K. (2019). Legal Debugging in Propositional Legal Representation. In: Kojima, K., Sakamoto, M., Mineshima, K., Satoh, K. (eds) New Frontiers in Artificial Intelligence. JSAI-isAI 2018. Lecture Notes in Computer Science(), vol 11717. Springer, Cham. https://doi.org/10.1007/978-3-030-31605-1_12
Download citation
DOI: https://doi.org/10.1007/978-3-030-31605-1_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-31604-4
Online ISBN: 978-3-030-31605-1
eBook Packages: Computer ScienceComputer Science (R0)