Skip to main content

Learning Weighted Video Segments for Temporal Action Localization

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11857))

Included in the following conference series:

  • 2634 Accesses

Abstract

This paper proposes a novel approach of learning weighted video segments via supervised temporal attention for action localization in untrimmed videos. The learned segment weights represent informativeness of video segments to recognize actions and benefit inferring the boundaries to temporally localize actions. We build a Supervised Temporal Attention Network (STAN) to dynamically learn the weights of video segments, and generate descriptive and discriminative video representations. We use a proposal generator and a classifier to estimate the boundaries of actions and classify the classes of actions, respectively. Extensive experiments are conducted on two public benchmarks THUMOS2014 and ActivityNet1.3. The results demonstrate that our approach achieves substantially better performance than the state-of-the-art methods, verifying the effectiveness of learning weighted video segments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bodla, N., Singh, B., Chellappa, R., Davis, L.S.: Soft-NMS-improving object detection with one line of code. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5561–5569 (2017)

    Google Scholar 

  2. Buch, S., Escorcia, V., Ghanem, B., Fei-Fei, L., Niebles, J.C.: End-to-end, single-stream temporal action detection in untrimmed videos. In: Proceedings of the British Machine Vision Conference (BMVC), vol. 1, p. 2 (2017)

    Google Scholar 

  3. Caba Heilbron, F., Carlos Niebles, J., Ghanem, B.: Fast temporal activity proposals for efficient detection of human actions in untrimmed videos. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1914–1923 (2016)

    Google Scholar 

  4. Chao, Y.W., Vijayanarasimhan, S., Seybold, B., Ross, D.A., Deng, J., Sukthankar, R.: Rethinking the faster R-CNN architecture for temporal action localization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1130–1139 (2018)

    Google Scholar 

  5. Dai, X., Singh, B., Zhang, G., Davis, L.S., Chen, Y.Q.: Temporal context network for activity localization in videos. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 5727–5736. IEEE (2017)

    Google Scholar 

  6. Das, A., Agrawal, H., Zitnick, L., Parikh, D., Batra, D.: Human attention in visual question answering: do humans and deep networks look at the same regions? Comput. Vis. Image Underst. 163, 90–100 (2017)

    Article  Google Scholar 

  7. Caba Heilbron, F., Escorcia, V., Ghanem, B., Niebles, J.C.: Activitynet: a large-scale video benchmark for human activity understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 961–970 (2015)

    Google Scholar 

  8. Gao, J., Yang, Z., Nevatia, R.: Cascaded boundary regression for temporal action detection. In: British Machine Vision Conference (2017)

    Google Scholar 

  9. Girshick, R.: Fast R-CNN. In: IEEE International Conference on Computer Vision, pp. 1440–1448 (2015)

    Google Scholar 

  10. Jiang, Y.G., et al.: THUMOS challenge: action recognition with a large number of classes (2014). http://crcv.ucf.edu/THUMOS14/

  11. Karaman, S., Seidenari, L., Del Bimbo, A.: Fast saliency based pooling offisher encoded dense trajectories, vol. 1 (2014)

    Google Scholar 

  12. Kong, W., Li, N., Liu, S., Li, T., Li, G.: BLP-boundary likelihood pinpointing networks for accurate temporal action localization. arXiv preprint arXiv:1811.02189 (2018)

  13. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  14. Lin, T., Zhao, X., Shou, Z.: Single shot temporal action detection. In: Proceedings of the 2017 ACM on Multimedia Conference, pp. 988–996. ACM (2017)

    Google Scholar 

  15. Lin, T., Zhao, X., Su, H., Wang, C., Yang, M.: BSN: boundary sensitive network for temporal action proposal generation. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 3–19 (2018)

    Google Scholar 

  16. Mnih, V., Heess, N., Graves, A., et al.: Recurrent models of visual attention. In: Advances in Neural Information Processing Systems, pp. 2204–2212 (2014)

    Google Scholar 

  17. Oneata, D., Verbeek, J., Schmid, C.: The LEAR submission at Thumos 2014. In: Computer Vision and Pattern Recognition [cs.CV] (2014)

    Google Scholar 

  18. Qin, Y., Song, D., Chen, H., Cheng, W., Jiang, G., Cottrell, G.W.: A dual-stage attention-based recurrent neural network for time series prediction. In: Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI 2017, Melbourne, Australia, 19–25 August 2017, pp. 2627–2633 (2017)

    Google Scholar 

  19. Qiu, H., Zheng, Y., Ye, H., Lu, Y., Wang, F., He, L.: Precise temporal action localization by evolving temporal proposals. In: Proceedings of the 2018 ACM on International Conference on Multimedia Retrieval, pp. 388–396. ACM (2018)

    Google Scholar 

  20. Shou, Z., Chan, J., Zareian, A., Miyazawa, K., Chang, S.F.: CDC: convolutional-de-convolutional networks for precise temporal action localization in untrimmed videos. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1417–1426. IEEE (2017)

    Google Scholar 

  21. Shou, Z., Wang, D., Chang, S.F.: Temporal action localization in untrimmed videos via multi-stage CNNs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1049–1058 (2016)

    Google Scholar 

  22. Singh, G., Cuzzolin, F.: Untrimmed video classification for activity detection: submission to activitynet challenge. arXiv preprint arXiv:1607.01979 (2016)

  23. Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotemporal features with 3D convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4489–4497 (2015)

    Google Scholar 

  24. Wang, L., Qiao, Y., Tang, X.: Action recognition and detection by combining motion and appearance features. THUMOS14 Action Recogn. Challenge 1, 2 (2014)

    Google Scholar 

  25. Wang, L., et al.: Temporal segment networks: towards good practices for deep action recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 20–36. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_2

    Chapter  Google Scholar 

  26. Xu, H., Das, A., Saenko, K.: R-C3D: region convolutional 3D network for temporal activity detection. In: The IEEE International Conference on Computer Vision (ICCV), vol. 6, p. 8 (2017)

    Google Scholar 

  27. Zhao, Y., Xiong, Y., Wang, L., Wu, Z., Lin, D., Tang, X.: Temporal action detection with structured segment networks. arXiv preprint arXiv:1704.06228 (2017)

Download references

Acknowledgements

This work was supported in part by the Natural Science Foundation of China (NSFC) under grants No. 61673062.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinxiao Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sun, C., Song, H., Wu, X., Jia, Y. (2019). Learning Weighted Video Segments for Temporal Action Localization. In: Lin, Z., et al. Pattern Recognition and Computer Vision. PRCV 2019. Lecture Notes in Computer Science(), vol 11857. Springer, Cham. https://doi.org/10.1007/978-3-030-31654-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31654-9_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31653-2

  • Online ISBN: 978-3-030-31654-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics