Abstract
Face alignment for facial images captured in-the-wild is a challenging and important problem. In this work, we introduced a two-stage face alignment method in order to solve the problem of the normal face alignment method running slowly on the CPU. Using the residual error between ground truth and mean shape as a training label makes the network easier to converge. The joint input of heatmap and original data in the second stage deepens the feature learning of these landmarks, making the minimal network also has suitable performance. The convolution and pooling structure allow the network to be faster and have good learning ability. The test results on open datasets show that our method has a significant improvement in processing performance with real-time CPU speed of 1100 fps while maintaining high accuracy.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bhagavatula, C., Zhu, C., Luu, K., Savvides, M.: Faster Than Real-time Facial Alignment: A 3D Spatial Transformer Network Approach in Unconstrained Poses. arXiv:1707.05653 [cs] (2017)
Tang, F., Zhang, J., Feng, Y., Guan, Q., Zhou, X.: Real-time face alignment enhancement by tracking. In: 2016 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 1011–1016. IEEE, Qingdao (2016). https://doi.org/10.1109/ROBIO.2016.7866457
Cao, X., Wei, Y., Wen, F., Sun, J.: Face alignment by explicit shape regression. Int. J. Comput. Vis. 60(2), 135–164 (2014)
Xiong, X., De la Torre, F.: Supervised descent method and its applications to face alignment. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition, pp. 532–539. IEEE, Portland (2013). https://doi.org/10.1109/CVPR.2013.75
Xiao, S., Feng, J., Xing, J., Lai, H., Yan, S., Kassim, A.: Robust facial landmark detection via recurrent attentive-refinement networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 57–72. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_4
Ren, S., Cao, X., Wei, Y., Sun, J.: Face alignment at 3000 FPS via regressing local binary features. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1685–1692. IEEE, Columbus (2014). https://doi.org/10.1109/CVPR.2014.218
Lee, D., Park, H., Yoo, C.D.: Face alignment using cascade Gaussian process regression trees. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4204–4212. IEEE, Boston (2015). https://doi.org/10.1109/CVPR.2015.7299048
Zhu, S., Li, C., Loy, C.C., Tang, X.: Face alignment by coarse-to-fine shape searching. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4998–5006. IEEE, Boston (2015). https://doi.org/10.1109/CVPR.2015.7299134
Wu, W., Qian, C., Yang, S., Wang, Q., Cai, Y., Zhou, Q.: Look at Boundary: A Boundary-Aware Face Alignment Algorithm. arXiv:1805.10483 [cs] (2018)
Kowalski, M., Naruniec, J., Trzcinski, T.: Deep Alignment Network: A convolutional neural network for robust face alignment. arXiv:1706.01789 [cs] (2017)
Milborrow, S., Nicolls, F.: Locating facial features with an extended active shape model. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5305, pp. 504–513. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88693-8_37
Sagonas, C., Tzimiropoulos, G., Zafeiriou, S., Pantic, M.: 300 faces in-the-wild challenge: the first facial landmark localization challenge. In: 2013 IEEE International Conference on Computer Vision Workshops, pp. 397–403. IEEE, Sydney (2013). https://doi.org/10.1109/ICCVW.2013.59
Saragih, J., Goecke, R.: A nonlinear discriminative approach to AAM fitting. In: 2007 IEEE 11th International Conference on Computer Vision, pp. 1–8. IEEE, Rio de Janeiro (2007). https://doi.org/10.1109/ICCV.2007.4409106
Saragih, J.M., Lucey, S., Cohn, J.F.: Deformable model fitting by regularized landmark mean-shift. Int. J. Comput. Vis. 91, 200–215 (2011). https://doi.org/10.1007/s11263-010-0380-4
Yang, S., Luo, P., Loy, C.C., Tang, X.: From Facial Parts Responses to Face Detection: A Deep Learning Approach. arXiv:1509.06451 [cs] (2015)
Smith, B.M., Zhang, L.: Collaborative facial landmark localization for transferring annotations across datasets. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8694, pp. 78–93. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10599-4_6
Sun, Y., Wang, X., Tang, X.: Deep convolutional network cascade for facial point detection. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition, pp. 3476–3483. IEEE, Portland (2013). https://doi.org/10.1109/CVPR.2013.446
Sun, Y., Wang, X., Tang, X.: Deep learning face representation from predicting 10,000 classes. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1891–1898. IEEE, Columbus (2014). https://doi.org/10.1109/CVPR.2014.244
Sun, Y., Wang, X., Tang, X.: Hybrid deep learning for face verification. In: TPAMI (2016)
Trigeorgis, G., Snape, P., Nicolaou, M.A., Antonakos, E., Zafeiriou, S.: Mnemonic descent method: a recurrent process applied for end-to-end face alignment. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4177–4187. IEEE, Las Vegas (2016). https://doi.org/10.1109/CVPR.2016.453
Wu, W., Yang, S.: Leveraging intra and inter-dataset variations for robust face alignment. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 2096–2105. IEEE, Honolulu (2017). https://doi.org/10.1109/CVPRW.2017.261
Wu, Y., Gou, C., Ji, Q.: Simultaneous facial landmark detection, pose and deformation estimation under facial occlusion. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5719–5728. IEEE, Honolulu (2017). https://doi.org/10.1109/CVPR.2017.606
Zhu, S., Li, C., Loy, C.C., Tang, X.: Unconstrained face alignment via cascaded compositional learning. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3409–3417. IEEE, Las Vegas (2016). https://doi.org/10.1109/CVPR.2016.371
Liu, Y., Jourabloo, A., Ren, W., Liu, X.: Dense face alignment. In: 2017 IEEE International Conference on Computer Vision Workshops (ICCVW), pp. 1619–1628. IEEE, Venice (2017). https://doi.org/10.1109/ICCVW.2017.190
Zhu, Z., Luo, P., Wang, X., Tang, X.: Deep learning identity-preserving face space. In: ICCV (2013)
Burgos-Artizzu, X.P., Perona, P., Dollar, P.: Robust face landmark estimation under occlusion. In: 2013 IEEE International Conference on Computer Vision, pp. 1513–1520. IEEE, Sydney (2013). https://doi.org/10.1109/ICCV.2013.191
Ghiasi, G., Fowlkes, C.C.: Occlusion coherence: localizing occluded faces with a hierarchical deformable part model. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1899–1906. IEEE, Columbus (2014). https://doi.org/10.1109/CVPR.2014.306
Zhang, Z., Luo, P., Loy, C.C., Tang, X.: Learning deep representation for face alignment with auxiliary attributes. IEEE Trans. Pattern Anal. Mach. Intell. 38, 918–930 (2016). https://doi.org/10.1109/TPAMI.2015.2469286
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Duan, P., Ning, X., Shi, Y., Zhang, S., Li, W. (2019). Faster Real-Time Face Alignment Method on CPU. In: Lin, Z., et al. Pattern Recognition and Computer Vision. PRCV 2019. Lecture Notes in Computer Science(), vol 11857. Springer, Cham. https://doi.org/10.1007/978-3-030-31654-9_34
Download citation
DOI: https://doi.org/10.1007/978-3-030-31654-9_34
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-31653-2
Online ISBN: 978-3-030-31654-9
eBook Packages: Computer ScienceComputer Science (R0)