Skip to main content

Fuzzy Control Reversing System Based on Visual Information

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11859))

Included in the following conference series:

  • 1816 Accesses

Abstract

Intelligentization of car navigation is an inevitable trend. Visual navigation has the advantages of high precision in short distances and low cost. This paper proposes a fuzzy control reversing system based on visual information. We obtain the trajectory of the rear camera by constructing reversing model of the car. YOLO (You Only Look Once) is used to detect pedestrians and cars appearing in the camera field of view and segment the detected images during the reversing process. The dynamic feature points are removed effectively by the proposed environmental statistical information analysis method. Using visual information to construct constraints to improve the traditional fuzzy control reversing system can provide drivers with accurate driving assistance information and effectively reduce the probability of accidents such as collisions. The experimental results show that the proposed method is effective and feasible.

This work is supported by the open fund of Shaanxi Key Laboratory of Integrated and Intelligent Navigation SKLIIN-20180102 and SKLIIN-20180107. This is a student work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adams, M., Vo, B., Mahler, R., Mullane, J.: SLAM gets a PHD: new concepts in map estimation. IEEE Robot. Autom. Mag. 21(2), 26–37 (2014)

    Article  Google Scholar 

  2. Häne, C., et al.: 3D visual perception for self-driving cars using a multi-camera system: calibration, mapping, localization, and obstacle detection. Image Vis. Comput. S0262885617301117 (2017)

    Google Scholar 

  3. Hee Lee, G., Faundorfer, F., Pollefeys, M.: Motion estimation for self-driving cars with a generalized camera. In: Computer Vision and Pattern Recognition (2013)

    Google Scholar 

  4. Halgamuge, S.K., Runkler, T.A., Glesner, M.: A hierarchical hybrid fuzzy controller for real-time reverse driving support of vehicles with long trailers. In: IEEE Conference on Fuzzy Systems, IEEE World Congress on Computational Intelligence (1994)

    Google Scholar 

  5. Chen, G., Zhang, D.: Back-driving a truck with suboptimal distance trajectories: a fuzzy logic control approach. IEEE Trans. Fuzzy Syst. 5(3), 369–380 (1997)

    Article  Google Scholar 

  6. Nogami, S., Hidaka, K.: A stereo camera based static and moving obstacles detection on autonomous visual navigation of indoor transportation vehicle. In: IECON 2018–44th Annual Conference of the IEEE Industrial Electronics Society, pp. 5421–5426, October 2018

    Google Scholar 

  7. Alvarez, H., Paz, L.M., Sturm, J., Cremers, D.: Collision avoidance for quadrotors with a monocular camera. In: Hsieh, M.A., Khatib, O., Kumar, V. (eds.) Experimental Robotics. STAR, vol. 109, pp. 195–209. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-23778-7_14

    Chapter  Google Scholar 

  8. He, K., Gkioxari, G., Dollar, P., Girshick, R: Mask R-CNN. IEEE Trans. Pattern Anal. Mach. Intell. (2017)

    Google Scholar 

  9. Bescos, B., Fácil, J.M., Civera, J., Neira, J.: DynaSLAM: tracking, mapping, and inpainting in dynamic scenes. IEEE Robot. Autom. Lett. 3(4), 4076–4083 (2018)

    Article  Google Scholar 

  10. Badrinarayanan, V., Kendall, A., Cipolla, R.: SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481–2495 (2017)

    Article  Google Scholar 

  11. Yu, C., et al.: DS-SLAM: a semantic visual slam towards dynamic environments. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1168–1174 (2018)

    Google Scholar 

  12. Rünz, M., Buffier, M., Agapito, L.: MaskFusion: real-time recognition, tracking and reconstruction of multiple moving objects. In: 2018 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), pp. 10–20 (2018)

    Google Scholar 

  13. Camurri, M., Bazeille, S.: Real-time depth and inertial fusion for local slam on dynamic legged robots. In: IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (2015)

    Google Scholar 

  14. Rezaei, M., Terauchi, M., Klette, R.: Robust vehicle detection and distance estimation under challenging lighting conditions. IEEE Trans. Intell. Transp. Syst. 16(5), 2723–2743 (2015)

    Article  Google Scholar 

  15. Li, B., Zhang, X., Sato, M.: Pitch angle estimation using a vehicle-mounted monocular camera for range measurement. In: 2014 12th International Conference on Signal Processing (ICSP), pp. 1161–1168, October 2014

    Google Scholar 

  16. Kim, H., Lee, Y., Woo, T., Kim, H.: Integration of vehicle and lane detection for forward collision warning system. In: IEEE International Conference on Consumer Electronics-Berlin (2016)

    Google Scholar 

  17. Bay, H., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006). https://doi.org/10.1007/11744023_32

    Chapter  Google Scholar 

  18. Redmon, J., Farhadi, A.: Yolo9000: better, faster, stronger. In: IEEE Conference on Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  19. Redmon, J., Farhadi, A.: Yolov3: an incremental improvement. CoRR, abs/1804.02767 (2018)

    Google Scholar 

  20. Danping, Z., Ping, T.: CoSLAM: collaborative visual SLAM in dynamic environments. IEEE Trans. Pattern Anal. Mach. Intell. 35(2), 354–366 (2013)

    Article  Google Scholar 

  21. Fan, Y., Han, H., Tang, Y., Zhi, T.: Dynamic objects elimination in SLAM based on image fusion. Pattern Recognit. Lett. (2018)

    Google Scholar 

  22. Bayona, A., SanMiguel, J.C., Martínez, J.M.: Stationary foreground detection using background subtraction and temporal difference in video surveillance. In IEEE International Conference on Image Processing (2010)

    Google Scholar 

  23. Kong, S.G., Kosko, B.: Adaptive fuzzy systems for backing up a truck-and-trailer. IEEE Trans. Neural Netw. 3(2), 211–223 (1992)

    Article  Google Scholar 

  24. Kosko, B.: Neural networks and fuzzy systems: a dynamical systems approach to machine intelligence, January 1992

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Han .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, S., Fan, Y., Tang, Y., Jing, X., Yao, J., Han, H. (2019). Fuzzy Control Reversing System Based on Visual Information. In: Lin, Z., et al. Pattern Recognition and Computer Vision. PRCV 2019. Lecture Notes in Computer Science(), vol 11859. Springer, Cham. https://doi.org/10.1007/978-3-030-31726-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31726-3_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31725-6

  • Online ISBN: 978-3-030-31726-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics