Skip to main content

Small Defect Detection in Industrial X-Ray Using Convolutional Neural Network

  • Conference paper
  • First Online:
  • 1913 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11859))

Abstract

It’s crucial to ensure the complete reliability of each metallic component in vehicle industry. In the past few years, X-ray testing has been widely adopted in defect detection field. Due to huge production in industry, it’s absolutely necessary for manufacturers to employ more intelligent and automated inspection scheme to detect defects efficiently. This study develops an accurate and fast detection method combined with X-ray images using computer vision and deep learning techniques to recognize small defects, mark theirs’ area and divide them into different levels according to their sizes. This program modifies the original RetinaNet to adapt to tiny defects. We present a novel data augmentation method aiming to expand the number of defects. Then a multi-scale transform module is designed to generate scale-specific feature map which helps to grade defects better. Experiments show that the proposed method can achieve significant precision improvement over X-ray machine with similarly high recall rate. Both speed and accuracy of this scheme reach practical industrial-service demand.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Russakovsky, O., Deng, J., Su, H., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  2. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: CVPR (2014)

    Google Scholar 

  3. Ren, S., He, K., Girshick, R.B., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. TPAMI 39(6), 1137–1149 (2017)

    Article  Google Scholar 

  4. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  5. Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: unified, real-time object detection. In: CVPR, pp. 779–788 (2016)

    Google Scholar 

  6. Lin, G.T., Goyal, P., Girshick, R.B., He, K., Dollar, P.: Focal loss for dense object detection. In: ICCV (2017)

    Google Scholar 

  7. He, J.K., Zhang, X., Ren, S. Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

  8. Mery, D., Arteta, C.: Automatic defect recognition in X-Ray testing using computer vision. In: WACV (2017)

    Google Scholar 

  9. Yen, H., Syu, M.: Inspection of polarizer tiny bump defects using computer vision. In: ICCE (2015)

    Google Scholar 

  10. Huang, J., et al.: Speed/accuracy trade-offs for modern convolutional object detectors. In: CVPR (2017)

    Google Scholar 

  11. Lin, T.Y., Doll´ar, P., Girshick, R., He, K., Hariharan, B., Belongiev, S.: Feature pyramid networks for object detection. In: CVPR (2017)

    Google Scholar 

  12. Lin, T.-Y., et al.: Microsoft COCO: Common Objects in Context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  13. Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. In: ICLR (2016)

    Google Scholar 

  14. Luo, W., Li, Y., Urtasun, R., Zemel, R.: Understanding the effective receptive field in deep convolutional neural networks. In: NIPS (2016)

    Google Scholar 

  15. Liu, S., Huang, D., Wang, Y.: Receptive field block net for accurate and fast object detection. In: ECCV (2018)

    Google Scholar 

  16. Everingham, M., Gool, L.J.V., Williams, C.K.I., Winn, J.M., Zisserman, A.: The pascal visual object classes (VOC) challenge. IJCV 88(2), 303–338 (2010)

    Article  Google Scholar 

  17. Dai, J., Li, Y., He, K., Sun, J.: R-FCN: object detection via region-based fully convolutional networks. In NIPS, pp. 379–387 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Gong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cheng, L., Gong, P., Qiu, G., Wang, J., Liu, Z. (2019). Small Defect Detection in Industrial X-Ray Using Convolutional Neural Network. In: Lin, Z., et al. Pattern Recognition and Computer Vision. PRCV 2019. Lecture Notes in Computer Science(), vol 11859. Springer, Cham. https://doi.org/10.1007/978-3-030-31726-3_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31726-3_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31725-6

  • Online ISBN: 978-3-030-31726-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics