Abstract
Education is a highly interesting field for Augmented Reality (AR) applications allowing for tangible experimentation and increased immersion. In this paper we present our efforts on adding an AR visualization on a physics airtable experiment used for the understanding of object motion and collisions on a nearly frictionless surface. Using AR, information such as the objects velocity, angular velocity and kinetic energy can be overlayed over the objects in real-time to give direct understanding of physics motion laws. We present the implementation of two versions of such an AR system, using an HMD and a projector respectively, and discuss the development challenges and advantages/disadvantages of each one.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Microsoft HoloLens (2018). https://www.microsoft.com/en-us/hololens
PTC Vuforia (2018). https://www.ptc.com/en/products/augmented-reality
Be-greifen project (2019). http://www.begreifen-projekt.de/
Dynamikum science center (2019). https://dynamikum.de/
Billinghurst, M., Clark, A., Lee, G., et al.: A survey of augmented reality. Found. Trends® Hum.-Comput. Interact. 8(2–3), 73–272 (2015)
Bower, M., Howe, C., McCredie, N., Robinson, A., Grover, D.: Augmented reality in education - cases, places and potentials. Educ. Media Int. 51(1), 1–15 (2014). https://doi.org/10.1080/09523987.2014.889400
Dunleavy, M., Dede, C.: Augmented reality teaching and learning. In: Spector, J.M., Merrill, M.D., Elen, J., Bishop, M.J. (eds.) Handbook of Research on Educational Communications and Technology, pp. 735–745. Springer, New York (2014). https://doi.org/10.1007/978-1-4614-3185-5_59
Dunleavy, M., Dede, C., Mitchell, R.: Affordances and limitations of immersive participatory augmented reality simulations for teaching and learning. J. Sci. Educ. Technol. 18(1), 7–22 (2008). https://doi.org/10.1007/s10956-008-9119-1
Kaufmann, H., Schmalstieg, D.: Mathematics and geometry education with collaborative augmented reality. Comput. Graph. 27(3), 339–345 (2003). https://doi.org/10.1016/s0097-8493(03)00028-1
Klopfer, E., Squire, K.: Environmental detectives—the development of an augmented reality platform for environmental simulations. Educ. Technol. Res. Dev. 56(2), 203–228 (2007). https://doi.org/10.1007/s11423-007-9037-6
Knierim, P., Kiss, F., Schmidt, A.: Look inside: understanding thermal flux through augmented reality. In: 2018 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct), pp. 170–171. IEEE (2018)
Pagani, A., Koehler, J., Stricker, D.: Circular markers for camera pose estimation (2011)
Rambach, J., Pagani, A., Schneider, M., Artemenko, O., Stricker, D.: 6DoF object tracking based on 3D scans for augmented reality remote live support. Computers 7(1), 6 (2018)
Strzys, M., et al.: Physics holo.lab learning experience: using smartglasses for augmented reality labwork to foster the concepts of heat conduction. Eur. J. Phys. 39(3), 035703 (2018)
Von Itzstein, G.S., Billinghurst, M., Smith, R.T., Thomas, B.H.: Augmented reality entertainment: taking gaming out of the box. In: Lee, N. (ed.) Encyclopedia of Computer Graphics and Games, pp. 1–9. Springer, Heidleberg (2017). https://doi.org/10.1007/978-3-319-08234-9
Acknowledgments
This work has been partially funded by the Federal Ministry of Education and Research of the Federal Republic of Germany as part of the research project and BeGreifen (Grant number 16SV7525K) and the EU Project Co2Team (Grant number 831891). The authors would like to thank the project partners StudioKLV and TU Kaiserslautern as well as the students Joshua Knobloch and Patrick Heinz for their contributions in this project.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Supplementary material 1 (mp4 15996 KB)
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Minaskan, N., Rambach, J., Pagani, A., Stricker, D. (2019). Augmented Reality in Physics Education: Motion Understanding Using an Augmented Airtable. In: Bourdot, P., Interrante, V., Nedel, L., Magnenat-Thalmann, N., Zachmann, G. (eds) Virtual Reality and Augmented Reality. EuroVR 2019. Lecture Notes in Computer Science(), vol 11883. Springer, Cham. https://doi.org/10.1007/978-3-030-31908-3_8
Download citation
DOI: https://doi.org/10.1007/978-3-030-31908-3_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-31907-6
Online ISBN: 978-3-030-31908-3
eBook Packages: Computer ScienceComputer Science (R0)