Abstract
In this work, we construct a lattice-based efficient Sequential Aggregate Signature (SAS) scheme that is provably secure in standard ideal cipher model with some slight changes. This framework is inspired by the scheme of Gentry et al. at PKC 2018 which presented trapdoor-permutation-based sequential aggregate signatures. Since to present, there is no known method to construct a lattice-based trapdoor permutation, we use lattice-based trapdoor function instead to design SAS scheme. In particular, our scheme is history-free, where the sequentially-executed aggregation operation does not need to take the previous messages in order as one part of its input. We also give software implementation of our SAS scheme using FALCON based trapdoor function, which originates from the provably secure NTRUSign signature scheme proposed by Stehlé and Steinfeld at Eurocrypt 2011. The experiment results show our scheme is efficient and practical.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bellare, M., Namprempre, C., Neven, G.: Unrestricted aggregate signatures. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 411–422. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73420-8_37
Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing efficient protocols. In: Proceedings of the 1st ACM Conference on Computer and Communications Security, pp. 62–73. ACM (1993)
Boldyreva, A., Gentry, C., O’Neill, A., Yum, D.H.: Ordered multisignatures and identity-based sequential aggregate signatures, with applications to secure routing. In: Proceedings of the 14th ACM Conference on Computer and Communications Security, pp. 276–285. ACM (2007)
Boneh, D., Freeman, D.M.: Homomorphic signatures for polynomial functions. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 149–168. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4_10
Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted signatures from bilinear maps. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 416–432. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9_26
Brogle, K., Goldberg, S., Reyzin, L.: Sequential aggregate signatures with lazy verification from trapdoor permutations. Inf. Comput. 239, 356–376 (2014)
Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a lattice basis. J. Cryptol. 25(4), 601–639 (2012)
Ducas, L., Prest, T.: Fast fourier orthogonalization. In: Proceedings of the ACM on International Symposium on Symbolic and Algebraic Computation, pp. 191–198. ACM (2016). https://doi.org/10.1145/2930889.2930923
El Bansarkhani, R., Buchmann, J.: Towards lattice based aggregate signatures. In: Pointcheval, D., Vergnaud, D. (eds.) AFRICACRYPT 2014. LNCS, vol. 8469, pp. 336–355. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06734-6_21
Fischlin, M., Lehmann, A., Schröder, D.: History-free sequential aggregate signatures. In: Visconti, I., De Prisco, R. (eds.) SCN 2012. LNCS, vol. 7485, pp. 113–130. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32928-9_7
Fouque, P.A., et al.: Falcon: fast-fourier lattice-based compact signatures over NTRU (2018). Accessed 12 June 2019. https://falcon-sign.info/
Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 1–17. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_1
Genise, N., Micciancio, D.: Faster Gaussian sampling for trapdoor lattices with arbitrary modulus. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 174–203. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9_7
Genise, N., Micciancio, D., Polyakov, Y.: Building an efficient lattice gadget toolkit: Subgaussian sampling and more. Technical report, Cryptology ePrint Archive, Report 2018/946, 2018 (2018). https://eprint.iacr.org/2018/946.pdf
Gentry, C., O’Neill, A., Reyzin, L.: A unified framework for trapdoor-permutation-based sequential aggregate signatures. In: Abdalla, M., Dahab, R. (eds.) PKC 2018. LNCS, vol. 10770, pp. 34–57. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76581-5_2
Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: Proceedings of the Fortieth Annual ACM Symposium on Theory of Computing, pp. 197–206. ACM (2008)
Gür, K.D., Polyakov, Y., Rohloff, K., Ryan, G.W., Savas, E.: Implementation and evaluation of improved Gaussian sampling for lattice trapdoors. In: Proceedings of the 6th Workshop on Encrypted Computing & Applied Homomorphic Cryptography, pp. 61–71. ACM (2018)
Hoffstein, J., Howgrave-Graham, N., Pipher, J., Silverman, J.H., Whyte, W.: NTRUSign: digital signatures using the NTRU lattice. In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 122–140. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36563-X_9
Hohenberger, S., Sahai, A., Waters, B.: Full domain hash from (leveled) multilinear maps and identity-based aggregate signatures. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 494–512. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_27
Hu, Y., Jia, H.: A new Gaussian sampling for trapdoor lattices with arbitrary modulus. Des. Codes Crypt. 1–18 (2019). https://doi.org/10.1007/s10623-019-00635-8
Lee, K., Lee, D.H., Yung, M.: Sequential aggregate signatures made shorter. In: Jacobson, M., Locasto, M., Mohassel, P., Safavi-Naini, R. (eds.) ACNS 2013. LNCS, vol. 7954, pp. 202–217. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38980-1_13
Lu, S., Ostrovsky, R., Sahai, A., Shacham, H., Waters, B.: Sequential aggregate signatures and multisignatures without random oracles. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 465–485. Springer, Heidelberg (2006). https://doi.org/10.1007/11761679_28
Lu, S., Ostrovsky, R., Sahai, A., Shacham, H., Waters, B.: Sequential aggregate signatures, multisignatures, and verifiably encrypted signatures without random oracles. J. Cryptol. 26(2), 340–373 (2013)
Lu, X., Yin, W., Wen, Q., Jin, Z., Li, W.: A lattice-based unordered aggregate signature scheme based on the intersection method. IEEE Access 6, 33986–33994 (2018). https://doi.org/10.1109/ACCESS.2018.2847411
Lysyanskaya, A., Micali, S., Reyzin, L., Shacham, H.: Sequential aggregate signatures from trapdoor permutations. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 74–90. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3_5
Lyubashevsky, V., Micciancio, D.: Generalized compact knapsacks are collision resistant. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 144–155. Springer, Heidelberg (2006). https://doi.org/10.1007/11787006_13
Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_1
Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_41
Neven, G.: Efficient sequential aggregate signed data. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 52–69. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3_4
Peikert, C., Rosen, A.: Efficient collision-resistant hashing from worst-case assumptions on cyclic lattices. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 145–166. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878_8
Shannon, C.E.: Communication theory of secrecy systems. Bell Syst. Tech. J. 28(4), 656–715 (1949)
Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999). https://doi.org/10.1137/S0097539795293172
Stehlé, D., Steinfeld, R.: Making NTRU as secure as worst-case problems over ideal lattices. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 27–47. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4_4
Stehlé, D., Steinfeld, R., Tanaka, K., Xagawa, K.: Efficient public key encryption based on ideal lattices. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 617–635. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7_36
Acknowledgment
This paper is supported by the National Key R&D Program of China through project 2017YFB0802500, by the National Cryptography Development Fund through project MMJJ20170106, by the foundation of Science and Technology on Information Assurance Laboratory through project 61421120305162112006, the Natural Science Foundation of China through projects 61772538, 61672083, 61532021, 61472429, 91646203 and 61402029.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Wang, Z., Wu, Q. (2019). A Practical Lattice-Based Sequential Aggregate Signature. In: Steinfeld, R., Yuen, T. (eds) Provable Security. ProvSec 2019. Lecture Notes in Computer Science(), vol 11821. Springer, Cham. https://doi.org/10.1007/978-3-030-31919-9_6
Download citation
DOI: https://doi.org/10.1007/978-3-030-31919-9_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-31918-2
Online ISBN: 978-3-030-31919-9
eBook Packages: Computer ScienceComputer Science (R0)