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Abstract. Radiotherapy treatment planning currently requires many trial-and-

error iterations between the planner and treatment planning system, as well as 

between the planner and physician for discussion/consultation. The physician’s 

preferences for a particular patient cannot be easily quantified and precisely 

conveyed to the planner. In this study we present a real-time volumetric Pareto 

surface dose generation deep learning neural network that can be used after 

segmentation by the physician, adding a tangible and quantifiable endpoint to 

portray to the planner. From 70 prostate patients, we first generated 84,000 in-

tensity modulated radiation therapy plans (1,200 plans per patient) sampling the 

Pareto surface, representing various tradeoffs between the planning target vol-

ume (PTV) and the organs-at-risk (OAR), including bladder, rectum, left femur, 

right femur, and body. We divided the data to 10 test patients and 60 train-

ing/validation patients. We then trained a hierarchically densely connected con-

volutional U-net (HD U-net), to take the PTV and avoidance map representing 

OARs masks and weights, and predict the optimized plan. The HD U-net is ca-

pable of accurately predicting the 3D Pareto optimal dose distributions, with 

average [mean, max] dose errors of [3.4%, 7.7%](PTV), [1.6%, 5.6%](bladder), 

[3.7%, 4.2%](rectum), [3.2%, 8.0%](left femur), [2.9%, 7.7%](right femur), 

and [0.04%, 5.4%](body) of the prescription dose. The PTV dose coverage pre-

diction was also very similar, with errors of 1.3% (D98) and 2.0% (D99). Ho-

mogeneity was also similar, differing by 0.06 on average. The neural network 

can predict the dose within 1.7 seconds. Clinically, the optimization and dose 

calculation is much slower, taking 5-10 minutes. 
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1 Introduction 

Radiation therapy is one of the major cancer therapy modalities, accounting for two-

thirds of cancer patients in the US, either standalone or in conjunction with surgery, 

chemotherapy, immunotherapy, etc. In the typical current treatment planning work-

flow, a treatment planner interacts with a commercial treatment planning system to 

solve an inverse optimization problem, either in an intensity modulated radiation ther-
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apy (IMRT)[1-3] or volumetric modulated arc therapy (VMAT)[4-7] setting. The 

planner manually tunes many hyperparameters, such as dose-volume constraints and 

weightings, to control the tradeoff between multiple clinical objectives. These hy-

perparameters are meticulously tuned in a time-consuming trial-and-error fashion to 

reach a suitable clinical solution. In addition, many rounds feedback from the physi-

cian is needed for the physician to discuss the plan quality with the planner and to 

properly portray their desired tradeoffs. This is largely due to the fact that the physi-

cian’s preferences for a particular patient cannot be fully quantified and precisely 

conveyed to the planner. This trial-and-error process results in hours of planning time, 

and the many iterations of physician feedback may extend the time to several days 

until the plan is accepted. 

Recently, deep learning with multi-layered neural networks has exploded in pro-

gress, particularly in computer vision. We realize that these new developments can be 

utilized to solve aspects of the treatment planning problem. Specifically, deep learn-

ing can be utilized to quickly realize the physician’s preferences in a tangible and 

quantifiable manner that can be presented to the treatment planner prior to treatment 

planning. In this study we present a real-time Pareto surface dose generation deep 

learning neural network that can be used immediately after segmentation by the phy-

sician. Pareto optimal plans are the solutions to a multicriteria problem with various 

tradeoffs. In particular, the tradeoff lies with the dose coverage of the tumor and the 

dose sparing of the various critical structures. The benefit of the of such a model is 

two-fold. First, the physician can interact with the model to immediately view a dose 

distribution, and then adjust some parameters to push the dose towards their desired 

tradeoff in real time. This also allows for the physician to quickly comprehend the 

kinds of the tradeoffs that are feasible for the patient. Second, the treatment planner, 

upon receiving the physician’s desired dose distribution, can quickly generate a fully 

deliverable plan that matches this dose distribution, saving time in tuning the optimi-

zation hyperparameters and discussing with the physician. We developed, trained, and 

tested the feasibility of the model on prostate cancer patients planned with 7 beam 

IMRT. 

2 Methods 

2.1 Prostate patient data and Pareto plan generation 

We acquired the anatomical data for 70 prostate patients, in terms of the segmentation 

of the planning target volume (PTV) and the organs-at-risk, including bladder, rec-

tum, left femur, right femur, and body. Ring and skin structures were added as tuning 

structures. The patient contours and dose arrays were formatted into 192 x 192 x 64 

arrays at 2.5 mm3 voxel size. We then calculated the dose influence arrays for these 

70 patients, for a 7 equidistant coplanar beam plan IMRT, with 2.5 mm2 beamlets at 

100 cm isocenter—a typical setup for prostate IMRT. Using this dose calculation 

data, we generated IMRT plans that sampled the Pareto surface, representing various 

tradeoffs between the PTV and OARs. The multicriteria objective can be written as 
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𝑚𝑖𝑛𝑚𝑖𝑧𝑒

𝑥
    {𝑓𝑃𝑇𝑉(𝑥), 𝑓𝑂𝐴𝑅1

(𝑥), 𝑓𝑂𝐴𝑅2
(𝑥), … , 𝑓𝑂𝐴𝑅𝑛

(𝑥)} 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜                                 𝑥 ≥ 0,                                     
(1) 

where 𝑥 is the fluence map intensities to be optimized. There exists individual objec-

tives, 𝑓𝑠(𝑥)  ∀𝑠 ∈ 𝑃𝑇𝑉, 𝑂𝐴𝑅, for the PTV and each of the OARs. Typically, the ob-

jective function is designed such that the goal is to deliver the prescribed dose to the 

PTV, while minimizing the dose to each OAR. Due to the physical aspects of external 

beam radiation, it is impossible to give the PTV exactly the prescription dose without 

irradiating normal tissue. Thus, we arrive at a multicriteria objective, where there does 

not exist a single optimal 𝑥∗ that would minimize all 𝑓𝑠(𝑥)  ∀𝑠 ∈ 𝑃𝑇𝑉, 𝑂𝐴𝑅. For a 

proof of concept in this study, we choose to use the L2-norm to represent the objec-

tive, 𝑓𝑠(𝑥) =
1

2
‖𝐴𝑠𝑥 − 𝑝𝑠‖2

2. Here, 𝐴𝑠 is the dose influence matrix for a given struc-

ture, and 𝑝𝑠 is the desired dose for a given structure, assigned as the prescription dose 

if 𝑠 is the PTV, and 0 otherwise. This allows for us to linearly scalarize[8] the mul-

ticritera optimization problem into a single-objective, convex optimization problem,  
 

𝑚𝑖𝑛𝑚𝑖𝑧𝑒
𝑥

                   
1

2
∑ 𝑤𝑠

2‖𝐷𝑠𝑥 − 𝑝𝑠‖2
2

𝑠∈𝑆

                        

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜                                 𝑥 ≥ 0.                                     
(2) 

The key to scalarizing the problem is the addition of 𝑤𝑠, which are the tradeoff 

weights for each objective function, 𝑓𝑠(𝑥)  ∀𝑠 ∈ 𝑃𝑇𝑉, 𝑂𝐴𝑅. With different values of 

𝑤𝑠, different Pareto optimal solutions are generated. Using an in-house GPU-based 

proximal-class first-order primal-dual algorithm, Chambolle-Pock[9], we generated 

1,200 pseudo-random plans per patient, totaling to 84,000 plans. 

Table 1. Weight assignment categories. The function 𝑟𝑎𝑛𝑑(𝑙𝑏, 𝑢𝑏) represents a uniform ran-

dom number between a lower bound, 𝑙𝑏, and an upper bound, 𝑢𝑏. 

Category Description 

Single organ spare 
𝑤𝑠𝑖

= 𝑟𝑎𝑛𝑑(0,1) 

𝑤𝑂𝐴𝑅\𝑠𝑖
= 𝑟𝑎𝑛𝑑(0,0.1) 

High weights 𝑤𝑠 = 𝑟𝑎𝑛𝑑(0,1)  ∀𝑠 ∈ 𝑂𝐴𝑅 

Medium weights 𝑤𝑠 = 𝑟𝑎𝑛𝑑(0,0.5)  ∀𝑠 ∈ 𝑂𝐴𝑅 

Low  weights 𝑤𝑠 = 𝑟𝑎𝑛𝑑(0,0.1)  ∀𝑠 ∈ 𝑂𝐴𝑅 

Extra low weights 𝑤𝑠 = 𝑟𝑎𝑛𝑑(0,0.05)  ∀𝑠 ∈ 𝑂𝐴𝑅 

Controlled weights 

𝑤𝑏𝑙𝑎𝑑𝑑𝑒𝑟 = 𝑟𝑎𝑛𝑑(0,0.2) 

𝑤𝑟𝑒𝑐𝑡𝑢𝑚 = 𝑟𝑎𝑛𝑑(0,0.2) 

𝑤𝑙𝑡 𝑓𝑒𝑚 ℎ𝑒𝑎𝑑 = 𝑟𝑎𝑛𝑑(0,0.1) 

𝑤𝑟𝑡 𝑓𝑒𝑚 ℎ𝑒𝑎𝑑 = 𝑟𝑎𝑛𝑑(0,0.1) 

𝑤𝑠ℎ𝑒𝑙𝑙 = 𝑟𝑎𝑛𝑑(0,0.1) 

𝑤𝑠𝑘𝑖𝑛 = 𝑟𝑎𝑛𝑑(0,0.3) 
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The generation of each plan entailed assigning pseudo-random weights to the organs-

at-risk. The weight for the PTV was kept at 1. The weight assignment fell into 1 of 6 

categories as shown in Table 1. For each patient, 100 plans for each organ-at-risk 

used the single organ spare category (bladder, rectum, left femoral head, right femoral 

head, shell, skin), totaling to 600 single organ spare plans for each patient. To ensure 

a larger sampling of weights, another 100 plans of the high, medium, low, and extra 

low weights were generated, as well as 200 plans of the controlled weights category. 

The bounds for the controlled weights were chosen through trial and error such that 

the final plan generated had a high likelihood of being in acceptable clinical bounds 

for an inexperienced human operator, but not necessarily acceptable for an experi-

enced physician. In total 1,200 plans were generated per patient. With 70 patients, the 

total number of plans generated was 84,000 plans. 

 

2.2 Deep learning architecture 

We utilized a volumetric Hierarchically Dense U-net (HD U-net) architecture[10], as 

shown in Figure 1, which adds in the densely connected convolutional layers[11] into 

the U-net architecture[12]. The  HD U-net was trained to take as input the PTV con-

tour, the body contour, and an avoidance map representing OARs masks assigned 

their respective 𝑤𝑠, and to predict the optimized 3D dose distribution. 

 

 

Fig 1. Specific HD U-net architecture used in this study. Black numbers to the left of the model 

represents the current dimensions of the 3D data at each hierarchy. The red numbers indicate 

the number of feature maps present at the current layer in the neural network. The large number 

of features maps are due to the densely connected convolutional layers. 

Specifically, our HD U-net architecture has 5 max pooling and 5 upsampling opera-

tions, ultimately reducing our image size from 192 x 192 x 64 voxels to 6 x 6 x 4 

voxels (the lowest level max pooling/upsampling layer reduces/expands leaves the 

slice dimension untouched), and back to 192 x 192 x 64 voxels. Skip connections are 

added between the first half and second half of the network, to allow for the propaga-

tion of local information with the global information. Densely connected convolution-

al connections are added in each block of the network, allowing for efficient infor-
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mation flow of features. The non-linearity used after each convolution was the scaled 

exponential linear unit (SELU) as presented by Klambauer et al. for self-normalizing 

neural networks[13]. The study proved, using the Banach fixed-point theorem, that by 

having the SELU nonlinear activation, the neuron activations automatically converge 

towards zero mean and unit variance. Also, by the paper suggestion, we did not in-

clude batch normalization, as that disrupts the self-normalizing property of SELU-

based networks. Since the densely connection convolutional layers allows for less 

trainable parameters to be used, instead of doubling the number of kernels after every 

max pooling, we increased number of kernels by 1.25 fold, to the nearest integer. We 

chose our final activation layer as the softplus activation, as our output data is non-

negative and we had found that it is much more stable for training than linear and the 

rectified linear unit (ReLU) when using SELU as the hidden layer activation.  

2.3 Training and Evaluation 

We randomly divided the data to 10 test patients and 60 model development (training 

and validation) patients. The 10 test patients were held out during the entire model 

development phase, and only used during evaluation. Five instances of the model 

were trained and validated, using 54 training patients and 6 validation patients, ac-

cording the schematic outlined in Figure 2. 

 

Fig 2. Training schematic for the HD U-net architecture 

At each training iteration, first a patient is selected and then set of 𝑤𝑠 is selected from 

one of the 1,200 plans. These set of weights are then converted into an avoidance 

map, which is a single channel of the input that represents the OAR masks assigned 

their corresponding 𝑤𝑠. In addition, the binary mask of the PTV and body are includ-

ed as input. The HD U-net then makes a prediction using these inputs. The optimized 

dose, that was generated using the dose influence array and Chambolle-Pock algo-

rithm, is used to minimize against the predicted dose distribution with a mean squared 
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error loss. Alternatively, a plan can be generated on the fly from a given set of 𝑤𝑠, but 

is less efficient for training on a single GPU. During training the model was assessed 

on the validation data every 200 iterations of training. Each instance of the model 

used a different set of validation patients for determining the at which iteration the 

lowest validation score was obtained. Using all 1,200 plans per training patient—

64,800 training plans total—we trained the model for 100,000 iterations using the 

Adam optimizer, with a learning rate of 1 × 10−4, using an NVIDIA V100 GPU. The 

10 test patients were then evaluated using the trained models. 

To equally compare across patients, the test plans were first normalized such that 

the dose to 95% of the PTV (D95) was equal to the prescription dose. For evaluation 

criteria, the PTV coverage (D98, D99), PTV max dose (defined as D2 by the ICRU-

83 report[14]), homogeneity (
𝐷2−𝐷98

𝐷50
), and the structure max and mean doses (Dmax 

and Dmean) were evaluated. 

3 Results 

  

Fig 3. Example avoidance map, optimized dose, and prediction for a test patient. The avoidance 

map represents the structure masks assigned their respective optimization structure weights, ws. 

 

Fig 4. Example dose volume histogram for a test patient. 

The HD U-net is capable of accurately predicting the Pareto optimal 3D dose distribu-

tions, with average mean dose errors of 3.4% (PTV), 1.6% (bladder), 3.7% (rectum), 

3.2% (left femur), 2.9% (right femur), and 0.04% (body) of the prescription dose, as 

compared to the optimized plans. In addition, the HD U-net maintains the average 
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max dose error of 7.7% (PTV), 5.6% (bladder), 4.2% (rectum), 8.0% (left femoral 

head), 7.7% (right femoral head), and 5.4% (body) of the prescription dose. The PTV 

dose coverage prediction was also very similar, with errors of 1.3% (D98) and 2.0% 

(D99) of the prescription dose. On average, the PTV homogeneity between the opti-

mized reference dose and the prediction differed by 0.06. Figure 3 shows the avoid-

ance map, optimized dose and prediction, and Figure 4 shows the dose volume histo-

gram for a test patient.  

It took approximately 15 days to train each instance of the model for 100,000 itera-

tions. Figure 5 represents the mean training and validation loss for the HD U-net over 

the 100,000 iterations of training. The validation curve begins to flatten out at around 

80,000 iterations while the training loss continues to decrease. The small standard 

deviation in validation loss between the model instances indicate the stability and 

reproducibility of the overall model framework and choice of hyperparameters. 

Given any structure weights set and anatomy, the neural network is capable of pre-

dicting the dose distribution in 1.7 seconds. Clinically, the optimization and dose 

calculation for IMRT takes approximately 5-10 minutes to complete. This makes it 

feasible for the model to be used in a real-time setting with a human operator. 

 

Fig 5. Training and validation loss. Solid line represents the mean loss of the 5 model instances 

trained on different training/validation sets. Error represents one standard deviation. 

4 Discussion and Conclusion 

While other deep learning models designed to learn and predict the dose distribution 

of a patient plans, based either on historical clinical data or optimized plans to meet 

standardized clinical criteria, were developed in recent years[10, 15-20], this Pareto 

dose distribution model, to our knowledge, is the first deep learning model to able to 

generate any optimized plan from just the anatomy and structure weights. Although 

the model does not generate the final plan in terms of deliverability, its real-time pre-

diction capabilities allow for it to be used as a tool for the physician quickly generate 

a dose distribution with realistic tradeoffs between the PTV and various OARs. This 

can then be given to the planner as an endpoint, alongside the other typical planning 

information provided by the physician. The treatment planner now has a tangible, 

physician-preferred endpoint to meet, and the physician gets an initial understanding 



8 

of what is physically achievable. To further improve the automation, we plan to im-

plement a robust dose mimicking optimization, such as TORA[21], which will auto-

matically generate a deliverable plan given a dose distribution or constraints. We 

expect that the implementation of such a framework would drastically reduce the 

number of feedback loops between the planner and physician, and potentially fully 

automate the treatment planning for simple cases. The valuable time that is saved 

would allow for the physician and planner to focus on more challenging cases to pro-

duce the best achievable plan. 
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