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Abstract. Although numerous improvements have been made in the
field of image segmentation using convolutional neural networks, the
majority of these improvements rely on training with larger datasets,
model architecture modifications, novel loss functions, and better op-
timizers. In this paper, we propose a new segmentation performance
boosting paradigm that relies on optimally modifying the network’s in-
put instead of the network itself. In particular, we leverage the gradients
of a trained segmentation network with respect to the input to transfer it
to a space where the segmentation accuracy improves. We test the pro-
posed method on three publicly available medical image segmentation
datasets: the ISIC 2017 Skin Lesion Segmentation dataset, the Shenzhen
Chest X-Ray dataset, and the CVC-ColonDB dataset, for which our
method achieves improvements of 5.8%, 0.5%, and 4.8% in the average
Dice scores, respectively.

Keywords: Semantic image segmentation · convolutional neural net-
works· gradient-based image enhancement.

1 Introduction

Recently, there have been considerable advancements in semantic image segmen-
tation using convolutional neural networks (CNNs), which have been applied to
interpretation tasks on both natural and medical images [13]. The improve-
ments are mostly attributed to exploring new neural architectures (with varying
depths, widths, and connectivity or topology), designing new types of compo-
nents or layers, adopting new loss functions, and training on larger datasets (via
augmentation or acquisition). As one of the first high impact CNN-based segmen-
tation models, Long et al., [14] proposed fully convolutional networks for pixel-
wise labeling. Next, encoder-decoder (and similarly convolution-deconvolution)
segmentation networks were introduced [1]. Soon after, Ronneberger et al. [18]
showed that adding skip connections to the segmentation network improves
model accuracy and addresses vanishing gradients. More recent advancements in-
clude densely connected CNN architectures [10], learnable skip connections [22],
hybrid object detection-segmentation [9], and a new encoder-decoder architec-
ture with Atrous separable convolution [5].

Designing new loss functions also resulted in improvements in subsequent
inference-time segmentation accuracy, e.g., optimizing various segmentation pre-
diction metrics, such as the intersection over union [3] and the Dice score [15],
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controlling the level of false positives and negatives [21,23], and adding regular-
izers to loss functions to encode geometrical and topological shape priors [2,16].

Some previous works resorted to modifying the input image to improve the
segmentation results. These modifications included applying conventional image
normalization techniques prior to feeding the image to a segmentation network,
e.g., Haematoxylin and Eosin pre-processing [7], edge-preserving smoothing [17],
and whitening transformation [11]. Other works generated variants of the input
image to augment the training data by applying radiometric and spatial image
transformations, e.g., rotation, color shifting/normalization, and elastic defor-
mation [19]. The shortcoming of such pre-processing methods is that they are
not explicitly optimized to improve a specific task e.g., segmentation or classifica-
tion. To the best of our knowledge, no previous work has optimized the manipu-
lation of the input image in order to improve segmentation accuracy of a trained
network. Recently, Drozdzal et al. [8] showed that attaching a pre-processing
module at the beginning of a segmentation network improves the network per-
formance. However, we argue that adding a pre-processor without any other
explicit constraint(s) amounts to adding (or prefixing) more layers, i.e., essen-
tially making the model deeper. Inspired by adversarial perturbations [12,24], in
this paper, we choose to optimally modify the input image prior to feed-forward
inference. Our input-transformation is carried out via a novel gradient based
method that leverages the computational processes of any trained segmentation
network. After calculating these optimal transformations on training data, we
then learn an image-to-image translation network that estimates an image mod-
ification mapping for novel test images. Note that our input transformation is
not a data-augmentation method (albeit data augmentation may still be per-
formed independently of our method), rather, we learn (from training data) a
translation network that will pre-process novel input at inference time.

In this paper, we make the following contributions: a) we introduce the first
iterative gradient-based input pre-processing method, b) we adopt an explicit
objective to effectuate the purpose of the pre-processor, and c) we show how
targeted gradient-based adversarial perturbation methods can be leveraged for
a better segmentation performance.

2 Method

Segmenting an input image I of size n×m assigns a label li ∈ C = {0, 1, · · · , L−1}
to the each pixel in I, where L is the number of classes. Given a segmentation
network with parameters Θ, let f(I; Θ) denote the pixel-wise activation for I
before the softmax normalization (denoted by ξC), and let Ŝ ∈ Rn×m×L represent
the segmented image as,

ξC (f(1− S(I + ∆I); Θ)) = Ŝ. (1)

Let S ∈ Rn×m×L denote the ground truth segmentation for I. For a perfect
segmentation, Ŝ = S. Our goal is to introduce a perturbation ∆I to I, such that
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the segmentation output of the modified image I + ∆I is equal to the ground
truth, i.e.,

ξC (f(S(I + ∆I); Θ)) = S (2)

Let fŜ(I; Θ) and fS(I; Θ) represent the pixel-wise activations corresponding to
the segmentation outputs Ŝ and S respectively. We apply a gradient descent
algorithm for estimating the perturbation ∆I to be added to I. The objective
function G for this can be written as

G(I, Ŝ,S,Θ) = fŜ(I + ∆I,Θ)− fS(I + ∆I,Θ). (3)

Starting with the original image I, we iteratively compute the gradient of the
loss G(I, Ŝ,S,Θ) with respect to I + δδδ

′(k)
I and add it to the image. Note that

δδδ
′(k)
I is zero for the first iteration. Let I(k) denote the perturbed image after the
kth iteration of gradient descent. For the kth iteration, we have

I(k+1) = I(k) + γ δδδ
′(k)
I (4)

where γ is a scaling constant, and δδδ′(k)
I is the gradient obtained for the kth iter-

ation calculated by gradient descent update as

δδδ
(k)
I = ∇G(I, Ŝ,S,Θ)

= ∇I(k)fŜ(I + ∆I,Θ)−∇I(k)fS(I + ∆I,Θ)
(5)

and then normalized using its L∞ norm for numerical stability as

δδδ
′(k)
I = δδδ

(k)
I

‖δδδ(k)
I ‖∞

. (6)

The algorithm terminates if the segmentation of the modified image is equal (or
close enough within an error margin) to the ground truth, or it reaches a certain
maximum number of iterations K. The total perturbation for image I is then
calculated as the sum of the individual perturbations, i.e., ∆I =

∑
k δδδ
′(k)
I . The

segmentation output of this perturbed image X + ∆I is denoted by S∗.
The calculation of ∆I requires knowledge of the ground truth segmentation

mask and thus is only available for the training data. To test the hypothe-
sis that the proposed gradient-based method improves the segmentation per-
formance, we perturb the test images with their corresponding ground truths,
and we obtain an almost perfect segmentation (Dice score ∼ 1.0). However,
since the ground truth segmentation masks for test images are not available in
practice, we propose to reconstruct an estimate of the perturbed test images.
In particular, given pairs of training images and their corresponding perturba-
tions, {(Itrain, Itrain + ∆Itrain)} , we train a deep model to learn Φ : Itrain →
Itrain + ∆Itrain

. Subsequently, we apply the learned Φ to the test data to obtain
the reconstruction Itest → Itest + ∆Itest

. To learn the transformation function
Φ(·), an image-to-image translation network can be used. Figure 1 shows an
overview of the proposed method.
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G(I, Ŝ, S,⇥) = fS(I + �I,⇥) � fŜ(I,⇥).
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Fig. 1: Left: Passing image I through the trained network N generates sub-optimal
output Ŝ. Gradient perturbation module (top) calculates perturbation ∆ on I, such
that passing I + ∆ through N yields results closer to ground truth S. Translation
network (middle) is trained to learn mapping Φ : I→ I + ∆. Test images are first
transformed via Φ before feeding them into N (bottom), which results in an improved
segmentation output S∗. Right: Reducing the logits of background and increasing that
of foreground.

3 Implementation Details and Data

3.1 Models

As the goal of this work is to demonstrate the effectiveness of the proposed
gradient-based perturbation, we use a state-of-the-art baseline segmentation net-
work i.e., the U-Net [18] and optimize it using Adadelta with a batch size of 64.
To learn the transformations made by the proposed gradient-based perturba-
tion method (GP) from the training data as discussed in Section 2, we use two
image-to-image translation networks: Cycle-GAN (cG) [25] and the hundred-
layers Tiramisu segmentation network (T) [10]. We modify the latter as an
image-to-image translation network and replace the original Tiramisu network’s
loss function with a loss function consisting of two terms: a Structural Similarity
Index Measure (SSIM) term and a mean absolute error (L1 loss) term:

L =
∑

Itrain

[
(1− SSIM (I, I + ∆)) + λ ‖I, I + ∆‖1

]
(7)

where SSIM (I, I + ∆) is the SSIM calculated between I and I + ∆, and λ
is a scaling constant. The SSIM loss captures the finer perceptual details to
which the human visual system is sensitive, such as contrast, luminance, and
structure for which the L1 loss fails. When reporting results, we use the following
abbreviations (i) ORIG: the original U-Net; (ii) GPcG: the proposed GP (γ =
1.0) + Cycle-GAN for reconstructing the test image perturbation; (iii) GPT: GP
(γ = 0.1) + Tiramisu reconstruction with L1 loss; and (iv) GPTs: GP (γ = 1.0)
+ Tiramisu reconstruction with SSIM loss (s; Eqn. 7). We choose the maximum
possible value of γ = 1.0 in Eqn. 4 for GPTs and GPcG methods to maximally
perturb images with the goal of highest possible segmentation performance, and
run the optimization for K = 100 iterations. Because the perturbations can have
negative values, we use a linear activation function for the last layer in all the
aforementioned image-to-image translation networks.
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3.2 Data

We use three datasets used to evaluate our method a) The ISIC 2017 Skin
Lesion Segmentation Dataset [6], hereafter referred to as SKIN, consists of
2000 skin lesion images for training and 600 test images. For all the images,
the lesions have been manually annotated by expert dermatologists for normal
skin and other miscellaneous structures. b) The Shenzhen Chest X-Ray
Dataset [20], hereafter referred to as LUNG, consists of 662 frontal chest X-
Ray images, out of which 336 are cases with manifestations of tuberculosis and
the remaining 326 are non-diseased ones. The corresponding ground truth masks
contain manually traced out boundaries for the left and the right lungs. c) The
CVC-ColonDB [4], hereafter referred to as COLON, is a database of frames
along with the corresponding annotated polyp masks extracted from colonoscopy
videos. The dataset consists of 300 training images and 50 test images.

4 Results and Discussion

To test the effectiveness of the proposed transformation method, in this sec-
tion, we present both quantitative and qualitative results on the three afore-
mentioned datasets. We start with SKIN and the different derivatives of the
proposed gradient-based perturbation method as discussed in Section 3.1, i.e.,
GPcG, GPT, and GPTs and compare them to ORIG. As shown in Figure 2,
the proposed method (i.e., GPTs) produces the closest segmentation mask to
the ground truth (GT) compared to other methods. Looking at the second row
of Figure 2, GPTs perturbs the pixel values in a band surrounding the lesion,
enhancing its contrast, making it more distinguishable from the background,
thereby boosting the segmentation network’s result, especially around the crit-
ical lesion boundary pixels. In Table 3, we report the quantitative results for

Fig. 2: Segmentation results on 2 sample images from SKIN. The top row shows the
segmentation masks overlaid on top of the image, while the bottom row shows the
original images (RAW) in the first two columns and the transformed images (TRNS)
in the next three columns.

SKIN obtained with U-Net. As shown, all the gradient-based perturbation meth-
ods outperform ORIG, with the proposed GPTs method achieving a significant
improvement of the mean Dice score by 5.8% compared to ORIG. Moreover, a vi-
sual inspection of the ORIG and the GPTs results (Figure 2, right) shows that the
latter is more adept at rejecting false negative pixels, which is also supported by
the results from Table 3 where GPTs improves the False Negative Rate (FNR) by
a considerably large amount (5.87%). Next, we pick the best-performing method
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from SKIN experiments, i.e., GPTs, and evaluate its performance on the remain-
ing two datasets: COLON and LUNG. Figure 3 shows the qualitative results
obtained for ORIG and GPTs applied to three sample images from LUNG and
COLON. As can be seen from the results, GPTs obtains segmentation results
much closer (i.e., smoother with no perforated or disconnected blobs) to the
ground truth segmentation (GT). This is also validated by the quantitative re-

Fig. 3: Sample segmentation and transformed results for the COLON (rows 1 and 2)
and LUNG (rows 3 and 4) datasets. RAW and TRNS refer to normal and transformed
images, respectively.

sults reported in Table 1 where GPTs outperforms ORIG in all the three metrics
- Dice score, FPR, and FNR, obtaining 4.8% and 0.5% improvements in the
mean Dice score for COLON and LUNG, respectively. To further capture the

Table 1: SKIN, LUNG and COLON segmentation results; Mean ± standard error.
Data Method Dice FPR FNR

SKIN ORIG 0.7743 ± 0.020 0.0327 ± 0.005 0.1905± 0.022
GPcG 0.7928 ± 0.017 0.0281 ± 0.002 0.1759 ± 0.014
GPT 0.7836 ± 0.015 0.0396 ± 0.005 0.1595 ± 0.017
GPTs 0.8190 ± 0.015 0.0399 ± 0.006 0.1318 ± 0.014

LUNG ORIG 0.9527 ± 0.003 0.0133 ± 0.0010 0.0504 ± 0.005
GPTs 0.9578 ± 0.003 0.0126 ± 0.0007 0.0441 ± 0.005

COLON ORIG 0.7384 ± 0.040 0.0115 ± 0.0030 0.2799 ± 0.042
GPTs 0.7737 ± 0.033 0.0099 ± 0.0020 0.2235 ± 0.038

improvement in segmentation performance, we plot the Gaussian kernel density
estimates to estimate the probability density functions of Dice score, FPR, and
FNR for the three datasets. The plots in Figure 4 support the quantitative results
with higher peaks (which correspond to higher densities) at larger Dice values
for GPTs as compared to ORIG for all three datasets. Next, we look at range of
the three metrics, and observe that they are in general more restricted to higher
values for Dice score and lower values for FPR and FNR for GPTs than ORIG.
Although we achieve up to ∼ 5% improvement in Dice score, it is important
to note that a much larger possible improvement is lost during the reconstruc-
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tion phase. For example, for SKIN, when we perturb the test images with their
corresponding ground truths as described in Section 2, we obtain almost per-
fect segmentation results i.e. Dice ∼ 1.0 (we emphasize that the performance
improvement is solely from the perturbation and not from the image-to-image
translation components), but the best results we obtain through reconstruction
is far less. We validated this by calculating the SSIM between the GP and the
GPTs images, and it was 0.32 ± 0.009. This shows that a lot of information
is lost in the reconstruction phase. Since training our input-perturbing mech-
anism requires gradients from an already-trained segmentation network, along
with pixel-level class labels, training our perturbation module and training the
segmentation network cannot be done simultaneously. In our next experiment,
we set out to demonstrate that using (i) our pre-trained perturbation network
as a pre-processor to a segmentation network leads to better results than (ii) an
end-to-end training of the pre-processor network serially connected to the seg-
mentation network. In other words, we compare the segmentation performance
when training the pre-processor with (i) vs. without (ii) the proposed gradient
based constraint. We find that the proposed method (i) achieves a higher Dice
score of 0.8190 compared to 0.8019 using (ii).
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Fig. 4: Kernel density estimation; 1st row: SKIN; 2nd row: COLON; 3rd row: LUNG.

5 Conclusion

We proposed a novel input image transformation optimized for improved seg-
mentation. A network gradient-based method calculates signed input perturba-
tions on training images, which are then used to train deep networks to infer
test image transformations. Our evaluations showed that the proposed approach
can improve the performance of baseline methods for a variety of medical imag-
ing modalities. A direction for future work includes focusing on improving the
translation step of the proposed method. Moreover, the proposed method can
be extended to other tasks such as image classification and object detection.
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