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Abstract

The human brain develops dynamically and regionally heterogeneously during the first two 

postnatal years. Cortical developmental regionalization, i.e., the landscape of cortical 

heterogeneity in development, reflects the organization of underlying microstructures, which are 

closely related to the functional principles of the cortex. Therefore, prospecting early cortical 

developmental regionalization can provide neurobiologically meaningful units for precise region 

localization, which will advance our understanding on brain development in this critical period. 

However, due to the absence of dedicated computational tools and large-scale datasets, our 

knowledge on early cortical developmental regionalization still remains intact. To fill both the 

methodological and knowledge gaps, we propose to explore the cortical developmental 

regionalization using a novel method based on nonnegative matrix factorization (NMF), due to its 

ability in analyzing complex high-dimensional data by representing data using several bases in a 

data-driven way. Specifically, a novel multi-view NMF (MV-NMF) method is proposed, in which 

multiple distinct and complementary cortical properties (i.e., multiple views) are jointly 

considered to provide comprehensive observation of cortical regionalization process. To ensure the 

sparsity of the discovered regions, an orthogonal constraint defined in Stiefel manifold is imposed 

in our MV-NMF method. Meanwhile, a graph-induced constraint is also included to improve the 

compactness of the discovered regions. Capitalizing on an unprecedentedly large dataset with 

1,560 longitudinal MRI scans from 887 infants, we delineate the first neurobiologically 

meaningful representation of early cortical regionalization, providing a valuable reference for 

brain development studies.

1 Introduction

The human brain undergoes a protracted course of development after birth, while maintains 

an exceptionally high rate of development in the first two years [1, 2]. There is a growing 

consensus that early development strongly affects brain cognition and function throughout 

the entire lifespan, suggesting that exploring the early brain developmental patterns is of 

great importance in understanding both ordered and disordered brains [1, 3]. Due to the non-
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uniformities in underlying cortical microstructures, which are closely related to functional 

principles of the cortex, the infant cerebral cortex grows in regionally heterogeneous 

manners, thus forming a unique landscape of cortical developmental regionalization. 

Prospecting such developmental regionalization could potentially provide neurobiologically 

meaningful units to facilitate precise region localization, inter-subject and inter-study 

comparison, and effective feature reduction for early brain disorder identification [4], thus 

advancing our understanding on brain development in this critical early period. However, 

due to the absence of dedicated computational tools and large-scale datasets, our knowledge 

of such infantile cortical developmental regionalization still remains intact.

To fill the methodological gap and hence to advance our knowledge towards this critical 

early postnatal period, we are motivated to explore cortical developmental regionalization in 

the first two postnatal years, by leveraging a novel multi-view nonnegative matrix 

factorization (MV-NMF) method and an unprecedentedly large-scale infant MRI dataset. 

The utilization of NMF to analyze complex high-dimensional cortical data is mainly 

motivated by three reasons. 1) It can naturally discover different groups of vertices varying 

in similar manners across different subjects and ages, thus providing a part-based cortical 

representation to facilitate the interpretability of the cortical regionalization. 2) By varying 

the desired number of output components/parts, NMF can reveal the regionalization at 

different resolutions in a hierarchical manner. 3) It is more flexible than other development-

based analyses [5], as there is no strict requirement of longitudinal data with multiple time 

points. On the other hand, the motivation to use multiple views, i.e., multiple cortical 

attributes (e.g., cortical thickness and surface area), is to provide comprehensive and 

complementary characterizations of the cortical regionalization process, as different cortical 

attributes have distinct neurobiological mechanisms and thus reflect distinct aspects of the 

regionalization progress.

Therefore, in our proposed MV-NMF method, we minimize an objective function to jointly 

decompose multi-view data matrices (of cortical attributes) for grouping cortical vertices 

into hierarchical regions. Specifically, apart from the conventional reconstruction error in 

each view, a multi-view regularization is included in our objective function to iteratively fuse 

multi-view information to encourage the consistency of regionalization results between 

different views. To improve the sparsity of the discovered regions, the orthogonal constraint 

is effectively imposed during the alternative optimization procedure by computing the 

gradient in the Stiefel manifold [6]. Moreover, a graph-induced regularization is also 

incorporated in our objective function to further improve the compactness of the results. The 

proposed MV-NMF method has been applied to an unprecedentedly large dataset with 1,560 

longitudinal MRI scans from 887 typically developing infants. The revealed landscape of 

early cortical regionalization provides a reliable reference for studying early postnatal 

cortical organization and progression.

2 Materials and Methods

2.1 Dataset and Image Processing

Totally 1,560 longitudinal MRI scans were collected from 887 typically developing infants 

(466 males / 421 females) with age at scan ranging from 0.2 months to 29.3 months. Using a 
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Siemens 3T head-only scanner, T1w images with the resolution of 1 × 1 × 1 mm3 were 

acquired with the parameters: TR=1,900 ms, TE=4.38 ms, inversion time=1,100 ms, and flip 

angle= 7°. T2w images with the resolution of 1.25 × 1.25 × 1.95 mm3 were acquired with 

the parameters: TR=7,380 ms, TE=119 ms, and flip angle=150°.

All MR images were preprocessed following a standard procedure [7], including skull 

stripping, cerebellum and brain stem removal, intensity inhomogeneity correction, rigid 

alignment of each scan to the age-matched infant brain atlas, tissue segmentation, non-

cortical structure masking and filling, and left-right hemisphere separation. Inner and outer 

cortical surfaces were reconstructed for each hemisphere and mapped onto a spherical space. 

To establish cortical correspondences across subjects and ages, we employed a 

longitudinally consistent registration strategy. Specifically, first, for each subject, 

longitudinal cortical correspondences were established by spherical registration of surfaces 

at the early time points to the corresponding surface at the last time point [8]. Then, inter-

subject cortical correspondences were established by groupwise registration of all spherical 

cortical surfaces at the last time point. All cortical surfaces were finally resampled to a 

standard mesh tessellation, and computed with surface area and cortical thickness for each 

vertex [8], which will be used as cortical attributes for discovering cortical developmental 

regionalization.

2.2 Nonnegative Matrix Factorization (NMF)

In a data-driven way, the NMF method approximates complex high-dimensional data by 

representing them as the linear combinations of limited bases, with each basis corresponding 

to a part/component. Taking cortical thickness as an example, the data matrix X ∈ ℝM × N is 

a large nonnegative matrix constructed by cortical thickness values from all scans (data 

samples), where M and N are the numbers of vertices and scans, respectively. Each column 

of X includes cortical thickness values from one scan. The NMF method decomposes X into 

two smaller non-negative matrices, i.e., the bases matrix W ∈ ℝM × K and the coefficients 

matrix H ∈ ℝK × N, by satisfying X ≈ WH. The number of bases (components/parts) should 

be small, i.e., K ≪ M and K ≪ N. As a result, each column of W is a basis that represents 

one distinct region/part, which indicates a group of cortical vertices jointly developing 

across subjects and ages. Each data sample (i.e., each column in X) can be approximately 

reconstructed by a linear combination of bases from W, using the corresponding column 

from H as the coefficients. By minimizing the Frobenius norm of the reconstruction error 

| |X − W |H| F
2 , W and H can be found through an iterative multiplication [9].

2.3 Multi-View NMF

Multiple cortical attributes, e.g., cortical thickness, surface area and myelin content, have 

distinct biological mechanisms and provide rich complementary information on cortical 

development, thus improving the reliability and meaningfulness of discovered basis 

matrices. Hence, we propose a multi-view NMF (MV-NMF) framework, with each view 

corresponding to a cortical attribute, to discover early cortical developmental 

regionalization. Besides the multi-view regularization, our MV-NMF also imposes an 

orthogonal constraint by computing the true gradient in an orthogonal parameter space, 
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namely Stiefel manifold. To further improve the compactness of the final solutions, a graph 

regularization is also included.

Objective Function.—Let Xv ∈ ℝM × Nv be the data matrix for the v-th view in total V 

views, while W v ∈ ℝM × K and Hv ∈ ℝK × Nv denote, respectively, the basis and coefficient 

matrices decomposed from Xv. Scalar Nv is the total number of samples in the v-th view. 

The objective function of our MV-NMF method is defined as

J = min
W v, Hv ≥ 0
W vTW v = I

1
2 ∑

v = 1…V
λv‖Xv − W vHv‖F

2 + ℛMV + α ⋅ ℛG .
(1)

Herein, alongside the reconstruction error in the first term, we introduce two additional 

terms, i.e., the multi-view regularization ℛMV  and the graph-based regularization ℛG. 

Parameters λv and α control the influences of their corresponding terms.

The multi-view regularization is defined as

ℛMV = 1
2 ∑

u = 1…V
∑

v = 1…V
θuv‖W u − W v‖F

2 , (2)

which aims to minimize the dissimilarity between the bases of different views. Parameter 

θuv controls the influence of the inconsistency between any two paired views.

The graph-based regularization ℛG is introduced to improve the compactness and remove 

small artifacts of discovered regions. Denoting matrix A as a symmetric adjacent matrix, 

which defines the one-ring connections of vertices on the cortical surface. Matrix D is a 

diagonal matrix, where each element Dii represents the sum of the i-th row (or column) of A. 

Let Tr(·) denote the trace of a matrix, the graph-based regularization is defined in terms of 

the graph Laplacian [10], i.e.,

ℛG = 1
2 ∑

v = 1…V
Tr W v

T(A − D)W v . (3)

Updating Rule.—First, the partial gradient of J toward Hv is found to be

∇HvJ = − λvW v
TXv + λvW v

TW vHv . (4)

Thus, it is straightforward to have the form of updating rule for Hv, with ⨀ representing the 

elementwise multiplication:

Hv Hv ⊙ W v
TXv

W v
TW vHv

. (5)
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To update Wv, we first compute the corresponding partial gradient:

∇W vJ = − λvXvHv
T − ∑

u = 1…V
θuvW u + ∑

u = 1…V
θuvW v + λvW vHvHv

T + α(A

− D)W v .
(6)

Then, in Stiefel manifold, which is a parameter space with the orthogonality constraint 

W v
TW v = I, the true gradient ∇W vJ (with orthogonality) [6] is computed by

∇W vJ = ∇W vJ − W v ∇W vJ TW v =

λvW vHvXv
TW v + ∑

u = 1, …, V
θuvW vW u

TW v + αDW v + αW vW v
TAW v

− λvXvHv
T + ∑

u = 1, v
θuvW u + αAW v + αW vW v

TDW v .

(7)

Accordingly, the multiplicative update rule for Wv is of the form

wv wv ⊙
λvXvHv

T + ∑u = 1
v θuvW u + αAW v + αW vW v

TDW v

λvW vHvXv
TW v + ∑u = 1

v θuvW vW u
TW v + αDW v + αW vW v

TAW v
.

(8)

Iterative Optimization.—To generate meaningful solutions, an appropriate initialization 

for NMF-based methods is necessary. Many single-view NMF methods employ the nndsvd 
initialization method [11], which has shown faster reduction of the residual error than 

random initialization. Herein, we also apply nndsvd algorithm for initialization, but with 

some modifications to adapt our proposed multi-view scheme. Specifically, we first obtain 

initializations from each view separately, which encode the potential jointly developing 

vertices on each view. Second, we explicitly look for the intersections from the 

initializations of different views to generate new components in the initialization, since their 

intersections encode the potential jointly developing vertices on all views. Third, according 

to the desired number of initialization components, the smallest components are removed. In 

this way, the multi-view NMF scheme can be appropriately initialized. The optimal bases 

matrices Wv and coefficients matrices Hv of each view were obtained by iteratively calling 

Equations (8) and (5). The final regions discovered using MV-NMF were the average of 

regions from different views.

3 Experiments

In this paper, cortical thickness and surface area were used in our MV-NMF scheme to 

explore cortical regionalization, since they are two important cortical morphological 

attributes with distinct neurobiological/genetic mechanisms and growth patterns during 

infancy [4]. The data matrix of each view is normalized so that each column averages to 1. 
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In our experiments, parameters of the proposed MV-NMF method were empirically set as: 

λ1 = λ2 1, θuv 1000, and α = 500.

Effectiveness of MV-NMF.

To integrate information from multiple views, one straightforward solution is to concatenate 

the multiple data matrices into a single matrix. Specifically, assume X1 ∈ ℝM × N1 and 

X2 ∈ ℝM × N2 are two data matrices in term of cortical thickness and surface area, 

respectively. One can directly concatenate X1 and X2 (as [X1, X2]), and then apply the 

conventional NMF on the concatenated big matrix for exploring cortical regionalization. We 

refer this method as rig-NMF, since it rigidly imposes the bases from different views to be 

identical. Hence, we compared the rig-NMF with our MV-NMF using the same data and 

initialization. For a fair comparison, we employed an orthogonal projective version of NMF 

[9] for the rig-NMF method, given its state-of-the-art performance with high orthogonality 

and compactness [12].

We assume that the effectiveness of a method can be reflected by the border consistency of 

its discovered regionalization across different resolutions. That is, if a border is more 

consistently preserved along the change of K (i.e., the number of output components), the 

result is more likely to reflect the stable hierarchical regionalization of the underlying 

microstructures. Accordingly, by increasing K from 2 to 7, the border consistencies obtained 

by rig-NMF and our MV-NMF are compared in Fig. 1. Note that, each component 

highlighted by black block in a specific row (e.g., K = 2) means that it is hierarchically 

decomposed into two finer components in the next row (e.g., K = 3). Based on the 

inconsistent borders pointed by blue arrows, it can be observed that our MV-NMF discovers 

borders with higher consistency, indicating the effectiveness and rationality of our MV-NMF.

Robustness of MV-NMF.

The proposed MV-NMF does not require different views to have the same number of 

samples. To show the robustness of the MV-NMF, we designed an imbalanced testing 

dataset, where we randomly removed half of the cortical thickness samples to check if our 

method can still produce similar results as using all samples. This situation could happen 

when estimated cortical thickness values are not reliable for some subjects, since cortical 

thickness (between 1 and 5 mm) is much more sensitive to cortical surface reconstruction 

results, compared to surface area. This process was repeated five times. By calculating the 

Dice coefficient between each imbalanced test and the case of using all samples, we finally 

summarized the mean Dice coefficients at different numbers of components in Fig. 2 (a). It 

can be observed that, compared with rig-NMF, our MV-NMF yields similar performance 

when K is between 2 and 8, but much better performance when K is larger. Across all 

resolutions, the Dice coefficients of our MV-NMF are always larger than 0.9, demonstrating 

the robustness of our proposed method.

Determination of Resolution K.

Whereas MV-NMF provides hierarchical regions while increasing the resolution, we need to 

select some representative resolutions for the best representation of the studied data. To this 
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end, a silhouette value was computed for each resolution K. It measures the intra-region 

similarity against inter-regions similarity. High silhouette values indicate better results. In 

each view, the similarity of two vertices i and j is evaluated using the correlation coefficient 

between Xv(i,·) and Xv(j,·). The multi-view silhouette value is the average of the values from 

all views, as shown in Fig. 2 (b). Naturally, higher resolutions lead to higher silhouette 

values. Yet we can still observe local peaks, such as for K = 13 and 25. Meanwhile, when 

resolution increases from 18 to 22, a plateau is shown. We thus chose 13, 18, and 25 as the 

most appropriate resolutions for the landscape of early cortical regionalization.

Discovered Regions.

Although 13, 18 and 25 are all shown to be appropriate resolutions, we prefer relatively finer 

ones when considering network/region-based analyses. Fig. 3 shows the discovered regions 

with K = 25 and their topography with sharp boundaries, which correspond well with 

existing neuroscience knowledge according to the name of each region given in the figure. 

Besides, these regions are also consistent with previous findings. For example, regions 2, 11, 

13, 15, 17, 18, 21, 22 and 25 are found in the genetic-based cortical topography [4]. Regions 

2, 6, 7, 11, 13, 14, 15, 18, 23, 24 are found in the cortical thickness based remodeling 

patterns in adolescents [12].

4 Conclusion

We have proposed a novel multi-view NMF scheme to jointly consider cortical thickness and 

surface area for exploring the early cortical developmental regionalization. Capitalizing on 

an unprecedentedly large infant MRI dataset, we have provided valuable references of region 

topography that encodes multi-view cortical developmental patterns. Our discovered 

regionalizatoin reflects co-developing vertices across ages and subjects on multi-views, 

which differs markedly from previous cortical atlases. These references will later be publicly 

released to facilitate other infant-related studies, thus boosting our knowledge in the early 

brain development. As an important future work, we will include more cortical attributes to 

discover regionalization patterns based on more than two views, which will provide more 

insights into early brain development.
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Fig. 1. 
The layers of hierarchical structures obtained by MV-NMF and rig-NMF, by increasing the 

component number K from 2 to 7. The inconsistent borders across different layers are 

pointed out with blue arrows.
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Fig. 2. 
(a) Mean Dice coefficients by performing five times imbalanced sample test. (b) Silhouette 

coefficients in terms of different resolutions. K = 13, 25 are local peaks. K = 18 shows a start 

of a plateau (i.e., K = 18 to 22).
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Fig. 3. 
The 25 regions and their topography with sharp boundaries.
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