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Abstract. The task of medical image segmentation commonly involves
an image reconstruction step to convert acquired raw data to images be-
fore any analysis. However, noises, artifacts and loss of information due
to the reconstruction process is almost inevitable, which compromises the
final performance of segmentation. We present a novel learning frame-
work that performs magnetic resonance brain image segmentation di-
rectly from k-space data. The end-to-end framework consists of a unique
task-driven attention module that recurrently utilizes intermediate seg-
mentation estimation to facilitate image-domain feature extraction from
the raw data, thus closely bridging the reconstruction and the segmen-
tation tasks. In addition, to address the challenge of manual labeling, we
introduce a novel workflow to generate labeled training data for segmen-
tation by exploiting imaging modality simulators and digital phantoms.
Extensive experimental results show that the proposed method outper-
forms several state-of-the-art methods.

1 Introduction

Most image segmentation tasks start from existing images. While this might seem
self-evident for natural image applications, many medical imaging modalities do
not acquire data in the image space. Magnetic Resonance Imaging (MRI), for ex-
ample, acquires data in the spatial-frequency domain (the so called k-space) and
the MR images need to be reconstructed from the k-space data before further
analysis. The traditional pipeline of image segmentation treats reconstruction
and segmentation as separate tasks. Image noises, residual artifacts and potential
loss of information on the imperfect reconstructed images are almost inevitable,
even with advanced image reconstruction methods. On the other hand, these
algorithms are usually designed to recover images for optimal visual quality to
be used by physicians, rather than the “task” quality, namely the “segmentation
quality” here. Without the final segmentation quality as a target, the reconstruc-
tion algorithm may discard image features that are critical for segmentation but
less influential to image quality. Meanwhile, the algorithm may spend most of
the resources (e.g. reconstruction time) to recover image features that are less
important to segmentation accuracy improvement. It is thus highly desirable to
use an end-to-end approach to predict segmentation directly from k-space.

*Work done while intern at Siemens Healthineers.
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Fig. 1. The proposed model takes the under-sampled k-space data as input and out-
puts segmentation masks. It consists of (a) reconstruction module, (b) segmentation
module, (c) attention module and (d) recurrent module.

Several end-to-end learning frameworks have been proposed for various appli-
cations. Caballero et al. [2] propose an unsupervised brain segmentation method
that treats both reconstruction and segmentation simultaneously using patch-
based dictionary sparsity and a Gaussian mixture model. This method is not
suitable for complicated scenarios such as the case where there are no clear
boundaries between different tissues. Schlemper et al. [10] propose two neural
networks (LI-net and Syn-net) that predict cardiac segmentation from under-
sampled k-space data. The Syn-net uses UNet [8] to map zero-filling image
(inverse Fourier transform of under-sampled k-space) directly to segmentation
maps. The LI-net exploits latent space features and requires fully-sampled images
during training. Huang et al. [5] propose a Joint-FR-Net that simply optimizes
a joint reconstruction and segmentation network by a combined loss function.
The most relevant work to ours is [11] where the authors present a deep neural
network architecture termed SegNetMRI. Specifically, the reconstruction and
the segmentation sub-networks are pretrained and fine-tuned with shared en-
coders. The final segmentation depends on the combination of the intermediate
segmentation results. The segmentation sub-network in SegNetMRI is trained
on reconstructed images, which contain artifacts and noises and may influence
the performance of segmentation. Different from SegNetMRI, we propose a new
feature sharing method that overcomes the interference with noisy data.

One challenge for end-to-end segmentation learning is the preparation of the
training data with ground truth segmentation. Most current studies simulate the
raw k-space data from DICOM images using direct Fourier transform. However,
realistic k-space data can rarely be recovered from the images alone due to the
complex-value nature of MR and common MR post-processing practices that
may alter the acquisition. In addition, it is hard to obtain the ground truth
segmentation for training. Manual labeling which is performed on images is prone
to imperfect reconstruction and human error for small anatomy structures.
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We present here an end-to-end architecture: Segmentation with End-to-end
Recurrent Attention Network (SERANet) featuring a unique recurrent attention
module that closely connects the reconstruction and the segmentation tasks.
The intermediate segmentation is recurrently exploited as anatomical prior that
provides guidance to recover segmentation-driven image features from the raw
data, which in turn improves segmentation performance. Our contributions in-
clude three folds: a) We propose an approach that recurrently performs image
segmentation directly from under-sampled k-space data; b) We introduce a novel
attention module that guides the network to generate segmentation-driven image
features to improve the segmentation performance; c) We present a novel work-
flow to generate under-sampled k-space data with oracle segmentation maps by
exploiting an MRI simulator and digital brain phantoms.

2 Methods

In this section, we begin with a brief introduction to the problem of achieving
segmentation directly from k-space. Then we describe our attention module and
end-to-end recurrent framework.

2.1 Background

Segmentation from raw data can be generally divided into two subproblems: re-
construction and segmentation. For deep learning based reconstruction on under-
sampled k-space: x = fRec(y,m), where x ∈ R2×w×h is the reconstructed image
(real and imaginary parts concatenated in the first dimension), y is the under-
sampled k-space data and m is the under-sampling mask indicating the position
of sampling. fRec is a deep neural network that can be optimized by reconstruc-
tion loss, such as the l2 loss: l2(x, xgt) = ‖x − xgt‖2. Specifically, as shown in
Figure 1 (a), the reconstruction module consists of two basic components. One
component is a Data Consistency (DC layer) [9] that compensates the difference
between the estimated and the measured k-space data. The other component is
a regularization block (Reg block) that takes as input the zero-filled fast Fourier
transform reconstructed image x0, or the output from the DC layer xdc, and
outputs an image x. Cascaded CNN [9] and UNet [4,11] are two popular choices
for Reg block. Deep learning based iterative reconstruction, motivated by the
recent success of compressed sensing in MR image reconstruction, is realized by
cascading a series of Reg blocks and DC layers. The second step is to use the
reconstructed image x to predict segmentation probabilities: s = fSeg(x). fSeg

is also a deep neural network that can be optimized by segmentation loss, such
as the cross entropy loss: lce(s, sgt) = −

∑
si∈S s

i
gt log(si). As shown in Figure 1

(b), the segmentation module is usually a UNet shape [8].

2.2 Attention module

In end-to-end training, it is beneficial to share information among different
tasks. Therefore, we propose an attention module, as shown in Figure 1 (c) that
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bridges the gap between reconstruction and segmentation to facilitate learning
segmentation-aware features in the image domain. We consider a brain segmen-
tation map as anatomical prior and use it to guide the image reconstruction such
that the segmentation information is explicitly utilized to extract segmentation-
aware image features from the raw k-space data. We use an attention network
to facilitate the segmentation-aware learning. Different from the traditional at-
tention mechanism that only considers two classes in one forward pass [6], we
propose to generate multi-class attention maps simultaneously to distinguish fea-
tures among four classes in the human brain: cerebrospinal fluid (CSF), gray mat-
ter (GM), white matter (WM) and background. After one forward pass through
the image reconstruction module and the segmentation module, an initial seg-
mentation result is obtained (see Figure 1 part (b)). The segmentation maps
s ∈ R4×w×h have four tissue maps in separate channels, which are concatena-
tion along the first dimension: s = s1 ⊕ s2 ⊕ s3 ⊕ s4, where si indicates the
ith class prediction, ⊕ represents concatenating along the first dimension. The
segmentation map itself is already a probability map. After a softmax layer σ(·)
that ensures the sum of the four different classes to be 1, the maps can be
utilized directly for attention. Each of the four segmentation probability maps
are element-wise multiplied with the input image features xt−1 ∈ R2×w×h to
generate new features xt ∈ R8×w×h:

xt = (s1t−1 � xt−1)⊕ (s2t−1 � xt−1)⊕ (s3t−1 � xt−1)⊕ (s4t−1 � xt−1), (1)

where subscript t represents the tth intermediate result (explained in the next
section). As shown in Figure 1 (c), the new image features xt go through one
Reg block for attention features (referred as AttReg) and one DC layer, in order
to extract image features. The difference between AttReg and Reg in the recon-
struction module is the input channel size: AttReg has 8 instead of 2 channels.
The output of the attention-assisted image feature extraction is then fed to the
same segmentation module with shared weights to generate a new segmentation
estimation st. Formally, st can be expressed as follows.

st = (fSeg ◦ fDC ◦ fAttReg)(xt), (2)

where ◦ denotes function composition and st is the new segmentation estima-
tion. By explicitly utilizing intermediate segmentation results for reconstruction,
or more precisely image feature extraction, segmentation-driven features will be
generated, which in turn improves segmentation performance during training
with back-propagation algorithm. It can be seen from Figure 3 that clear bound-
aries are generated using the proposed SERANet from under-sampled k-space
data, while the ground truth reconstruction from fully-sampled k-space data
contains noise.

2.3 Recurrent framework

We treat segmentation feature learning as a recurrent procedures that final re-
sult is achieved by iterating the attention module several times. Formally, given
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Algorithm 1: SERANet : Segmentation with Recurrent Attention Network

input : under-sampled k-space data y, under-sampling mask m, N , T
1 x

(N−1)
0 , x

(N)
0 ← fRec(y,m) ; // initial reconstruction feature x0

2 s0 ← fSeg(x
(N)
0 ) ; // initial segmentation result s0

3 if t ≤ T then

4 xt ← fDC ◦ fAttReg(x
(N−1)
0 , st−1) ; // Attention module

5 st ← fSeg(xt) ; // Recurrent segmentation

output: sT

under-sampled k-space data y and mask m, SERANet learns to segment the
brain in T iterations. N is the number of Reg blocks and DC layers. As de-
scribed in Algorithm 1, line 1 and 2 generate the initial reconstructed image x0
and brain tissue map s0. Then line 3 to 5 represent a recurrent segmentation-
aware reconstruction and segmentation process. The attention module fAttReg

takes the initial reconstruction feature xN−10 (feature from the N−1 reconstruc-
tion block) and segmentation probability maps st−1 as input and generates new
image xt, as illustrated in Figure 1 (c) and (d). To capture and memorize the
spatial information at different recurrences, a ConvLSTM layer [12] is integrated
into the UNet for segmentation. The objective function of the whole model is
defined as lce(sT , sgt), where sT denotes the output of the final iteration. By
doing so, the reconstruction module in our method does not see nor need any
ground truth reconstruction image during training. The recovered image con-
tent is guided by the segmentation error solely, which suffices the aim to recover
image domain features from the raw data that best suits the segmentation task,
rather than the conventional reconstruction task. The usage of “reconstruction”
to name the module is just for conceptual simplicity.

2.4 Generate k-space data with oracle segmentation maps

We propose here a novel method to generate realistic k-space data with ground
truth segmentation map. Specifically, a widely utilized MRI scanner simulator
MRiLab [7][1] is adopted to provide a realistic virtual MR scanning environment,
which includes scanner system imperfection, MR acquisition pattern and MR
data generation and recording. We use publicly available digital brain phantoms
from BrainWeb [3] as the object “scanned” in the MRI simulator. Each brain
is consisted of 12 tissue types with known spatial distributions. Each tissue
type has a unique set of values of MR physical parameters such as T1 and T2
that are needed for the MR scan simulation. Fully-sampled k-space data is then
simulated by scanning the digital brain in MRiLab. Under-sampling is performed
retrospectively by keeping a subset of the full-sampled data. To mimic realistic
MR scanning, white Gaussian noises are added to the k-space data at multiple
levels. The network never sees the fully-sampled data. The spatial distributions
of the tissues are the oracle segmentation maps.
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Table 1. Dice’s score of SERANet trained with different losses

Loss
10% noise 20% noise

CSF GM WM Aver. CSF GM WM Aver.

lce(sT ) + l2(xT ) 0.8048 0.8841 0.8518 0.8469 0.7995 0.8751 0.8092 0.8279∑T
t=0 lce(st) 0.8513 0.9082 0.8796 0.8797 0.8041 0.8733 0.8283 0.8352

lce(sT ) 0.8482 0.9102 0.8814 0.8799 0.8083 0.8762 0.8415 0.8423

3 Experiments

Implementation Details Total 20 healthy digital 3D brain volumes are uti-
lized. The networks are trained on 2D axial slices. 969 slices of 17 brains are used
for training and the rest 171 slices from 3 brains are reserved for testing only.
Each digital brain is scanned by a spin echo sequence with Cartesian readout.
Average TE = 80 ms and TR = 3 s are used and 5% variation of both TE
and TR values are introduced for varying MR contrasts. Each slice has the cor-
responding tissue segmentation mask from BrainWeb. All slices have a unified
size of 180× 216 with 1 mm isotropic resolution. We use a zero-mean Gaussian
distribution with a densely sampled k-space center to realize a pseudo-random
under-sampling pattern, where 30% phase encoding lines are maintained with
16 center k-space lines. All k-space data are added with additional 10% and 20%
white Gaussian noise. All models are implemented in Pytorch and trained on
NVIDIA TITAN Xp. Hyperparameters are set as: a learning rate of 10−4 with
decreasing rate of 0.5 for every 20 epochs, 50 maximum epochs, batch size of 12.
Adam optimizer is used in training all the networks. We adopt Dice’s score as
evaluation metrice in all experiments. For the recurrent steps T , the segmenta-
tion performance of our model in terms of Dice’s score has converged after two
recurrences. So we empirically set T = 2.

Effect of different losses We provide a comparison of training SERANet
with different losses in Tabel 1. We observe that SERANet constrained by the
reconstruction loss (l2) performs the worst, as shown in the first row of Table
1. This may seem surprising at first but it actually verifies that reconstruction
from the images with noise and artifacts may compromise segmentation results.
The model that is optimized solely using segmentation loss (lce) on the final
segmentation estimation sT achieves the best result. These results demonstrate
two key advantages of our proposed method. First, due to the efficiency of the
attention module, SERANet automatically learns image feature that benefits the
segmentation performance, without constraints on the reconstructed image. Sec-
ond, our method does not require cumbersome tweaking of loss weights between
reconstruction and segmentation tasks.

Effect of attention module We design two different baselines without the at-
tention module: one is a Two-step model that contains separate reconstruction
and segmentation modules, which are trained separately with reconstruction and
segmentation losses. The other is a Joint model, which also contains these two
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Fig. 2. Dice score as a function of the number of reconstruction blocks.
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Fig. 3. Segmentation result of SERANet and the compared models. CSF, GM and
WM parts in each brain are colorized with purple, orange and white, respectively.

modules but is trained together with only segmentation loss on the final output.
In order to evaluate the robustness under different settings, we compare perfor-
mances of Two-step, Joint and SERANet with different number of reconstruction
blocks. We also implement two different reconstruction blocks: one using cascad-
ing CNN (Type A) and the other using auto-encoder (Type B). The Dice’s score
against number of reconstruction block is plotted in Figure 2. We observe, as
expected, that with more cascading reconstruction blocks the segmentation per-
formances of all tested methods improve. However, SERANet outperforms the
others in all settings which proves the benefit of using the attention module.

For visualization, we also train an One-step model that takes input as zero-
filling images (inverse Fourier transform of under-sampled k-space data) and
outputs the segmentation maps. We visualize segmentation results and recon-
structed images of models trained by 20% noise data in Figure 3. Our method
SERANet predicts more accurate anatomical segmentation details and clearer
image contrasts compared to Two-step and Joint. This shows SERANet over-
comes the interference with noisy input by using the attention module.

Comparisons to State-of-the-Art We provide qualitative and quantitative
comparisons to three state-of-the-art algorithms: LI-net [10] Syn-net [10], and
SegNetMRI [11]. We also compare to the One-step model. We list the perfor-
mance of SERANet-7 that with 7 reconstruction blocks and SERANet-2 that
with 2 reconstruction blocks. The results of all methods are reported in Table
2. We also list whether the method is pretrained and what loss the method
uses to optimize in column 2 and 3, respectively. For LI-net and Syn-net, since
they perform segmentation from fully-sampled data as a warm start, we consider
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Table 2. Comparisons to State-of-the-Art

Method Pretrain Loss
10% noise 20% noise

CSF WM GM Aver. CSF WM GM Aver.

One-step No lce 0.7677 0.8334 0.7900 0.7970 0.7600 0.8324 0.7911 0.7945

LI-net [10] Yes lce 0.6849 0.7576 0.7558 0.7328 0.6686 0.7276 0.7282 0.7081

Syn-net [10] Yes lce+l2 0.7558 0.8256 0.7961 0.7925 0.7307 0.8095 0.7808 0.7737

SegNetMRI [11] Yes lce+l2 0.8210 0.8905 0.8575 0.8563 0.7817 0.8472 0.7728 0.8006

SERANet-2 No lce 0.8344 0.8977 0.8669 0.8663 0.8053 0.8706 0.8373 0.8377

SERANet-7 No lce 0.8548 0.9175 0.8905 0.8876 0.8122 0.8798 0.8457 0.8459

Ground truth One-step LI-net Syn-net SegNetMRI SERANet-7

Fig. 4. Segmentation result with different approaches.

this as a pretraining technique. We observe that SERANet-2 and SERANet-7
consistently outperform the three state-of-the-art approaches for both 10% and
20% noises. Additionally, the Dice’s scores drop more for the SegNetMRI when
noise level increases compared to SERANet, which may be due to the fact that
SegNetMRI contains information from the noisy ground truth images. Example
segmentation results are shown in Figure 4. Improvements of SERANet-7 on
detailed anatomy structure are highlighted by the green arrows.

4 Conclusion

In this paper, we propose a novel end-to-end approach SERANet for MR brain
segmentation, which performs segmentation directly on under-sampled k-space
data via a segmentation-aware attention mechanism. Moreover, we design a
training data generation workflow to simulate realistic MR scans on digital
brain phantoms with ground truth segmentation maps. Extensive experiments
are conducted and the results demonstrate the effectiveness and the superior
performance of our model compared to the state-of-the-art methods.

5 Additional Implementation Details

In this paper, we consider a segmentation problem with four brain segmentation
masks: 0-Background, 1-CSF, 2-Gray Matter and 3-White Matter. As mentioned
in the paper, these four masks are adapted from original 11 brain tissues. The
reason to use the four masks is that CSF, Gray Matter and White Matter cover
most parts of the brain, as shown in Figure 5 (a) and (b). The other eight tissues,
such as vessels, skulls and skins, are grouped as Background mask.
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(a) (b)

Fig. 5. (a) Original 11 tissues segment- masks. (b) Selected 4 tissues segment- masks.

5.1 Data generation

Restricted © Siemens Healthcare GmbH, 2017
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Fig. 6. The process to generate under-sampled k-space data.

The detailed data generation process is illustrated in Figure 6. Given fully-
sampled k-space data (top-left), we first randomly generate under-sampled mask,
e.g. with 70% sampling rate (top-middle). Under-sampled k-space data (top-
right) is obtained by employing the mask on the fully-sampled k-space data.
Then, fully-sampled image (bottom-left) can be generated from fully-sampled k-



10 Qiaoying Huang, Xiao Chen, Dimitris Metaxas, and Mariappan S. Nadar

space data via inverse fast Fourier transform. Note that the fully-sampled image
is used as ground truth by some existing algorithms, however, it may contain
noise and comprise the segmentation performance. Similarly, zero-filling image
(bottom-right) is generated from under-sampled k-space data via inverse Fourier
transform, and is taken as the input in all models.

5.2 Network architectures

In our SERANet, we implement two types of regularization blocks: cascaded
CNN (Type A) [9] and auto-encoder (Type B) [11], which are two popular choices
for image reconstruction using deep learning. Their architectures are respectively
shown in Figure 7 (a) and 7 (b). We also show the architecture of the UNet
adopted in the paper for the segmentation module in Figure 7 (c).

64 64 64 64 64

128 128

64

256

(a) Regularization block: Type A (b) Regularization block: Type B

64

128

256
512

256

128

64

reconstructed image segmentation mask

(c) Segmentation network (UNet)

Fig. 7. Achitectures of two regularization blocks and one segmentation network utilized
in the paper.

6 Additional Quantitative Result

In this section, we provide additional quantitative results. We demonstrate the
comparison results of our SERANet and other approaches on data with 10%
(Figure 6) white Gaussian noise and data with 20% noise (Figure 6). For LI-net
and Syn-net, we only show their segmentation results since they bypassed the
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reconstruction step. For our SERANet, we present the results of SERANet-2,
SERANet-4 and SERANet-7 here.

Ground Truth(20% noise)

Ground Truth One-step(Fully)

One-step(Fully) One-step(Under)

One-step(Under)

Two-step

Two-step

Joint

Joint

SegNetMRI

SegNetMRI

LI-net (no reconstruction)

Syn-net (no reconstruction)

SERANet-2

SERANet-2

SERANet-4

SERANet-4

SERANet-7

SERANet-7

Fig. 8. Segmentation performance on input data with 10% white Gaussian noise. Since
LI-net and Syn-net bypass the reconstruction, we only show their segmentation results
here.
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