Skip to main content

A Surface-Theoretic Approach for Statistical Shape Modeling

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2019 (MICCAI 2019)

Abstract

We present a novel approach for nonlinear statistical shape modeling that is invariant under Euclidean motion and thus alignment-free. By analyzing metric distortion and curvature of shapes as elements of Lie groups in a consistent Riemannian setting, we construct a framework that reliably handles large deformations. Due to the explicit character of Lie group operations, our non-Euclidean method is very efficient allowing for fast and numerically robust processing. This facilitates Riemannian analysis of large shape populations accessible through longitudinal and multi-site imaging studies providing increased statistical power. We evaluate the performance of our model w.r.t. shape-based classification of pathological malformations of the human knee and show that it outperforms the standard Euclidean as well as a recent nonlinear approach especially in presence of sparse training data. To provide insight into the model’s ability of capturing natural biological shape variability, we carry out an analysis of specificity and generalization ability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alexandrino, M.M., Bettiol, R.G.: Lie Groups and Geometric Aspects of Isometric Actions, vol. 8. Springer, Heidelberg (2015)

    Book  Google Scholar 

  2. Ambellan, F., Tack, A., Ehlke, M., Zachow, S.: Automated segmentation of knee bone and cartilage combining statistical shape knowledge and convolutional neural networks. Med. Image Anal. 52, 109–118 (2019)

    Article  Google Scholar 

  3. Arsigny, V., Fillard, P., Pennec, X., Ayache, N.: Log-Euclidean metrics for fast and simple calculus on diffusion tensors. Magn. Reson. Med. 56(2), 411–421 (2006)

    Article  Google Scholar 

  4. Bogo, F., Romero, J., Loper, M., Black, M.J.: FAUST: dataset and evaluation for 3D mesh registration. In: CVPR. IEEE (2014)

    Google Scholar 

  5. Botsch, M., Sumner, R., Pauly, M., Gross, M.: Deformation transfer for detail-preserving surface editing. In: VMV, pp. 357–364 (2006)

    Google Scholar 

  6. Brandt, C., von Tycowicz, C., Hildebrandt, K.: Geometric flows of curves in shape space for processing motion of deformable objects. Comput. Graph. Forum 35(2), (2016)

    Google Scholar 

  7. do Carmo, M.P.: Differential Geometry of Curves and Surfaces. Prentice-Hall, Englewood Cliffs (1976)

    Google Scholar 

  8. Charpiat, G., Faugeras, O., Keriven, R., Maurel, P.: Distance-based shape statistics. In: ICASSP, pp. V925–V928. IEEE (2006)

    Google Scholar 

  9. Ciarlet, P.G.: An introduction to differential geometry with applications to elasticity. J. Elast. 78(1), 1–215 (2005)

    Article  MathSciNet  Google Scholar 

  10. Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active shape models-their training and application. Comput. Vis. Image Underst. 61(1), 38–59 (1995)

    Article  Google Scholar 

  11. Davies, R., Twining, C., Taylor, C.: Statistical Models of Shape: Optimisation and Evaluation. Springer, London (2008). https://doi.org/10.1007/978-1-84800-138-1

    Book  MATH  Google Scholar 

  12. Davis, B.C., Fletcher, P.T., Bullitt, E., Joshi, S.: Population shape regression from random design data. Int. J. Comput. Vis. 90(2), 255–266 (2010)

    Article  Google Scholar 

  13. Durrleman, S., Prastawa, M., Charon, N., Korenberg, J.R., Joshi, S., Gerig, G., Trouvé, A.: Morphometry of anatomical shape complexes with dense deformations and sparse parameters. NeuroImage 101, 35–49 (2014)

    Article  Google Scholar 

  14. Fletcher, P.T., Lu, C., Joshi, S.: Statistics of shape via principal geodesic analysis on lie groups. In: CVPR, vol. 1, p. I-95. IEEE (2003)

    Google Scholar 

  15. Fletcher, P., Lu, C., Pizer, S., Joshi, S.: Principal geodesic analysis for the study of nonlinear statistics of shape. IEEE Trans. Med. Imaging 23(8), 995–1005 (2004)

    Article  Google Scholar 

  16. Freifeld, O., Black, M.J.: Lie bodies: a manifold representation of 3D human shape. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7572, pp. 1–14. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33718-5_1

    Chapter  Google Scholar 

  17. Fuchs, M., Jüttler, B., Scherzer, O., Yang, H.: Shape metrics based on elastic deformations. J. Math. Imaging Vis. 35(1), 86–102 (2009)

    Article  MathSciNet  Google Scholar 

  18. Gao, L., Lai, Y.K., Liang, D., Chen, S.Y., Xia, S.: Efficient and flexible deformation representation for data-driven surface modeling. ACM Trans. Graph. 35(5), 158 (2016)

    Article  Google Scholar 

  19. Hasler, N., Stoll, C., Sunkel, M., Rosenhahn, B., Seidel, H.P.: A statistical model of human pose and body shape. Comput. Graph. Forum 28(2), 337–346 (2009)

    Article  Google Scholar 

  20. Heeren, B., Zhang, C., Rumpf, M., Smith, W.: Principal geodesic analysis in the space of discrete shells. Comput. Graph. Forum 37(5), 173–184 (2018)

    Article  Google Scholar 

  21. Hefny, M.S., Okada, T., Hori, M., Sato, Y., Ellis, R.E.: A liver Atlas using the special euclidean group. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9350, pp. 238–245. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24571-3_29

    Chapter  Google Scholar 

  22. Heimann, T., Meinzer, H.P.: Statistical shape models for 3D medical image segmentation: a review. Med. Image Anal. 13(4), 543–563 (2009)

    Article  Google Scholar 

  23. Joshi, S., Davis, B., Jomier, M., Gerig, G.: Unbiased diffeomorphic Atlas construction for computational anatomy. NeuroImage 23, S151–S160 (2004)

    Article  Google Scholar 

  24. Kircher, S., Garland, M.: Free-form motion processing. ACM Trans. Graph. 27(2), 12 (2008)

    Article  Google Scholar 

  25. Rumpf, M., Wirth, B.: An elasticity-based covariance analysis of shapes. Int. J. Comput. Vis. 92(3), 281–295 (2011)

    Article  MathSciNet  Google Scholar 

  26. von Tycowicz, C., Ambellan, F., Mukhopadhyay, A., Zachow, S.: An efficient Riemannian statistical shape model using differential coordinates. Med. Image Anal. 43, 1–9 (2018)

    Article  Google Scholar 

  27. von Tycowicz, C., Schulz, C., Seidel, H.P., Hildebrandt, K.: Real-time nonlinear shape interpolation. ACM Trans. Graph. 34(3), 34:1–34:10 (2015)

    Google Scholar 

  28. Zhang, C., Heeren, B., Rumpf, M., Smith, W.A.: Shell PCA: statistical shapemodelling in shell space. In: ICCV, pp. 1671–1679. IEEE (2015)

    Google Scholar 

Download references

Acknowledgments

The authors are funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy – The Berlin Mathematics Research Center MATH+ (EXC-2046/1, project ID: 390685689). Furthermore we are grateful for the open-access datasets OAI (The Osteoarthritis Initiative is a public-private partnership comprised of five contracts (N01-AR-2-2258; N01-AR-2-2259; N01-AR-2-2260; N01-AR-2-2261; N01-AR-2-2262) funded by the National Institutes of Health, a branch of the Department of Health and Human Services, and conducted by the OAI Study Investigators. Private funding partners include Merck Research Laboratories; Novartis Pharmaceuticals Corporation, GlaxoSmithKline; and Pfizer, Inc. Private sector funding for the OAI is managed by the Foundation for the National Institutes of Health. This manuscript was prepared using an OAI public use data set and does not necessarily reflect the opinions or views of the OAI investigators, the NIH, or the private funding partners.) and FAUST [4] as well as for the open-source software Deformetrica [13].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix Ambellan .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 2 (mp4 29602 KB)

Supplementary material 1 (pdf 740 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ambellan, F., Zachow, S., von Tycowicz, C. (2019). A Surface-Theoretic Approach for Statistical Shape Modeling. In: Shen, D., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2019. MICCAI 2019. Lecture Notes in Computer Science(), vol 11767. Springer, Cham. https://doi.org/10.1007/978-3-030-32251-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32251-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32250-2

  • Online ISBN: 978-3-030-32251-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics