Skip to main content

Fast Polynomial Approximation to Heat Diffusion in Manifolds

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2019 (MICCAI 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11767))

  • 8663 Accesses

Abstract

Heat diffusion has been widely used in image processing for surface fairing, mesh regularization and surface data smoothing. We present a new fast and accurate numerical method to solve heat diffusion on curved surfaces. This is achieved by approximating the heat kernel using high degree orthogonal polynomials in the spectral domain. The proposed polynomial expansion method avoids solving for the eigenfunctions of the Laplace-Beltrami operator, which is computationally costly for large-scale surface meshes, and the numerical instability associated with the finite element method based diffusion solvers. We apply the proposed method to localize the sex differences in cortical brain sulcal and gyral curve patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andrade, A., et al.: Detection of fMRI activation using cortical surface mapping. Hum. Brain Mapp. 12, 79–93 (2001)

    Article  Google Scholar 

  2. Cachia, A., et al.: A primal sketch of the cortex mean curvature: a morphogenesis based approach to study the variability of the folding patterns. IEEE Trans. Med. Imaging 22, 754–765 (2003)

    Article  Google Scholar 

  3. Chung, M.K., Qiu, A., Seo, S., Vorperian, H.K.: Unified heat kernel regression for diffusion, kernel smoothing and wavelets on manifolds and its application to mandible growth modeling in CT images. Med. Image Anal. 22, 63–76 (2015)

    Article  Google Scholar 

  4. Chung, M.K., Worsley, K.J., Robbins, S., Evans, A.C.: Tensor-based brain surface modeling and analysis. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. I, pp. 467–473 (2003)

    Google Scholar 

  5. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on graphs with fast localized spectral filtering. In: Advances in Neural Information Processing Systems, pp. 3844–3852 (2016)

    Google Scholar 

  6. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1, 269–271 (1959)

    Article  MathSciNet  Google Scholar 

  7. Douglas, D.H., Peucker, T.K.: Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. Cartographica Int. J. Geograph. Inf. Geovisualization 10, 112–122 (1973)

    Article  Google Scholar 

  8. Genovese, C.R., Lazar, N.A., Nichols, T.: Thresholding of statistical maps in functional neuroimaging using the false discovery rate. NeuroImage 15, 870–878 (2002)

    Article  Google Scholar 

  9. Glasser, M.F., et al.: The minimal preprocessing pipelines for the Human Connectome Project. NeuroImage 80, 105–124 (2013)

    Article  Google Scholar 

  10. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products, 7th edn. Academic, San Diego (2007)

    MATH  Google Scholar 

  11. Hammond, D.K., Vandergheynst, P., Gribonval, R.: Wavelets on graphs via spectral graph theory. Appl. Comput. Harmonic Anal. 30, 129–150 (2011)

    Article  MathSciNet  Google Scholar 

  12. Kim, W.H., Pachauri, D., Hatt, C., Chung, M.K., Johnson, S., Singh, V.: Wavelet based multi-scale shape features on arbitrary surfaces for cortical thickness discrimination. In: Advances in Neural Information Processing Systems, pp. 1241–1249 (2012)

    Google Scholar 

  13. Lyu, I., Kim, S., Woodward, N., Styner, M., Landman, B.: TRACE: a topological graph representation for automatic sulcal curve extraction. IEEE Trans. Med. Imaging 37, 1653–1663 (2018)

    Article  Google Scholar 

  14. Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W.: NIST Handbook of Mathematical Functions. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  15. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Anal. Mach. Intell. 12, 629–639 (1990)

    Article  Google Scholar 

  16. Reuter, M.: Hierarchical shape segmentation and registration via topological features of Laplace-Beltrami eigenfunctions. Int. J. Comput. Vision 89, 287–308 (2010)

    Article  Google Scholar 

  17. Seo, S., Chung, M.K., Vorperian, H.K.: Heat Kernel smoothing using Laplace-Beltrami eigenfunctions. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010. LNCS, vol. 6363, pp. 505–512. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15711-0_63

    Chapter  Google Scholar 

  18. Shen, L., Chung, M.: Large-scale modeling of parametric surfaces using spherical harmonics. In: Third International Symposium on 3D Data Processing, Visualization and Transmission (3DPVT), pp. 294–301 (2006)

    Google Scholar 

  19. Smith, B., et al.: The OBO foundry: coordinated evolution of ontologies to support biomedical data integration. Nat. Biotechnol. 25, 1251 (2007)

    Article  Google Scholar 

  20. Tan, M., Qiu, A.: Spectral Laplace-Beltrami wavelets with applications in medical images. IEEE Trans. Med. Imaging 34, 1005–1017 (2015)

    Article  Google Scholar 

  21. Van Essen, D.C., et al.: The human connectome project: a data acquisition perspective. NeuroImage 62, 2222–2231 (2012)

    Article  Google Scholar 

  22. Wang, G., Zhang, X., Su, Q., Shi, J., Caselli, R.J., Wang, Y.: A novel cortical thickness estimation method based on volumetric Laplace-Beltrami operator and heat kernel. Med. Image Anal. 22, 1–20 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by NIH Grant R01 EB022856. We would like to thank Won Hwa Kim of University of Texas Arlington and Vikas Singh of University of Wisconsin-Madison for providing valuable discussions on the diffusion wavelets.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shih-Gu Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, SG., Lyu, I., Qiu, A., Chung, M.K. (2019). Fast Polynomial Approximation to Heat Diffusion in Manifolds. In: Shen, D., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2019. MICCAI 2019. Lecture Notes in Computer Science(), vol 11767. Springer, Cham. https://doi.org/10.1007/978-3-030-32251-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32251-9_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32250-2

  • Online ISBN: 978-3-030-32251-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics