Skip to main content

Hierarchical Simulation of Onboard Networks

  • Conference paper
  • First Online:
Intelligent Distributed Computing XIII (IDC 2019)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 868))

Included in the following conference series:

Abstract

The paper presents a solution for hierarchical simulation of onboard networks, which allows performing simulation at different levels of details. This solution was integrated into a new CAD system - SpaceWire Automated Network Design and Simulation. The paper describes hierarchical simulation component SANDS based on SystemC and methods that it is based on. The overview is followed by methods of SystemC parallelism. Finally, the authors present results of simulation parallelisation and performance testing on a supercomputer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Olenev, V., Lavroskaya, I., Korobkov, I., Sheynin, Yu.: Design and simulation of onboard SpaceWire networks. In: Proceeding of the 24th Conference of FRUCT Association, MTUCI, Moscow, Russia, pp. 291–299 (2019)

    Google Scholar 

  2. Jianru, H., Xiaomin, C., Huixian, S.: An OPNET model of SpaceWire and validation. In: Proceedings of the 2012 International Conference on Electronics, Communications and Control, pp. 792–795. IEEE Computer Society, October 2012

    Google Scholar 

  3. Dellandrea, B., Gouin, B., Parkes, S., Jameux, D.: MOST: modeling of SpaceWire & SpaceFiber traffic-applications and operations: on-board segment. In: Proceedings of the DASIA 2014 Conference, Warsaw (2014)

    Google Scholar 

  4. Thales Alenia Space: Modeling Of SpaceWire Traffic. Project Executive Summary & Final Report, 25 p. (2011)

    Google Scholar 

  5. NS-3 Manual: NS-3 Network Simulator, 165 p. (2017)

    Google Scholar 

  6. van Leeuwen, B., Eldridge, J., Leemaster, J.: SpaceWire model development technology for satellite architecture. Sandia National Laboratories, Sandia Report, 30 p. (2011)

    Google Scholar 

  7. Mirabilis Design: Mirabilis VisualSim data sheet, 4 p. (2003)

    Google Scholar 

  8. SpaceWire Standard. ECSS – Space Engineering. “SpaceWire – Links, Nodes, Routers and Networks”. ECSS-E-ST-50-12C, July 2008

    Google Scholar 

  9. ESA. Standard ECSS-E-ST-50-52C, SpaceWire — Remote memory access protocol. Noordwijk: Publications Division ESTEC, 5 February 2010

    Google Scholar 

  10. Sheynin, Y., Lavrovskaya, I., Olenev, V., Korobkov, I., Dymov, D., Kochura, S.: STP-ISS transport protocol for spacecraft on-board networks. In: 2014 International SpaceWire Conference (SpaceWire), pp. 1–6. IEEE, September 2014

    Google Scholar 

  11. Ezudheen, P., Chandran, P., Chandra, J., Simon, B.P., Ravi, D.: Parallelizing SystemC kernel for fast hardware simulation on SMP machines. In: Proceedings of the ACM/IEEE/SCS Workshop on PADS, pp. 80–87 (2009)

    Google Scholar 

  12. TI. OMAP 4470 (2011). https://is.gd/VQ7ncC. Accessed 17 June 2019

  13. Ventroux, N., Sassolas, T.: A new parallel SystemC kernel leveraging manycore architectures. In: Proceedings of the DATE, pp. 487–492 (2016)

    Google Scholar 

  14. Roth, C., Reder, S., Erdogan, G., Sander, O., Almeida, G.M., Bucher, H., Becker, J.: Asynchronous parallel MPSoC simulation on the Single-Chip Cloud Computer. In: Proceedings of the International Symposium on System-on-Chip, pp. 1–8 (2012)

    Google Scholar 

  15. Peeters, J., Ventroux, N., Sassolas, T., Lacassagne, L.: A SystemC TLM framework for distributed simulation of complex systems with unpredictable communication. In: Proceedings of DASIP, pp. 1–8 (2011)

    Google Scholar 

  16. Mello, A., Maia, I., Greiner, A., Pecheux, F.: Parallel simulation of SystemC TLM 2.0 compliant MPSoC on SMP workstations. In: Proceedings of DATE, pp. 606–609, March 2010

    Google Scholar 

  17. Pessoa, I.M., Mello, A., Greiner, A., Pêcheux, F.: Parallel TLM simulation of MPSoC on SMP workstations: influence of communication locality. In: Proceedings of ICM, pp. 359–362 (2010)

    Google Scholar 

  18. Ziyu, H., Lei, Q., Hongliang, L., Xianghui, X., Kun, Z.: A parallel SystemC environment: ArchSC. In: Proceedings of ICPADS, pp. 617–623 (2009)

    Google Scholar 

  19. Supercomputing center “Polytechnic”. http://scc.spbstu.ru/index.php/about-scc/scc-is. Accessed 17 June 2019

  20. Weinstock, J.H.: Parallel SystemC Simulation. https://ice.rwth-aachen.de/research/tools-projects/parallel-systemc-simulation/. Accessed 17 June 2019

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentin Olenev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Olenev, V., Lavrovskaya, I., Korobkov, I., Sinyov, N., Sheynin, Y. (2020). Hierarchical Simulation of Onboard Networks. In: Kotenko, I., Badica, C., Desnitsky, V., El Baz, D., Ivanovic, M. (eds) Intelligent Distributed Computing XIII. IDC 2019. Studies in Computational Intelligence, vol 868. Springer, Cham. https://doi.org/10.1007/978-3-030-32258-8_22

Download citation

Publish with us

Policies and ethics