Skip to main content

7 Years of Developing Seed Techniques for Alzheimer’s Disease Diagnosis Using Brain Image and Connectivity Data Largely Bypassed Prediction for Prognosis

  • Conference paper
  • First Online:
Predictive Intelligence in Medicine (PRIME 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11843))

Included in the following conference series:

Abstract

Unveiling pathological brain changes associated with Alzheimer’s disease (AD) and its earlier stages including mild cognitive impairment (MCI) is a challenging task especially that patients do not show symptoms of dementia until it is late. Over the past years, neuroimaging techniques paved the way for computer-based diagnosis and prognosis to facilitate the automation of medical decision support and help clinicians identify cognitively intact subjects that are at high-risk of developing AD. As a progressive neurodegenerative disorder, researchers investigated how AD affects the brain using different approaches: (1) image-based methods where mainly neuroimaging modalities are used to provide early AD biomarkers, and (2) network-based methods which focus on functional and structural brain connectivities to give insights into how AD alters brain wiring. In this exceptional review paper, we screened MICCAI proceedings published between 2010 and 2016 and IPMI proceedings published between 2011 and 2017, where ‘seed’ technical ideas generally get published, to identify neuroimaging-based technical methods developed for AD and MCI classification and prediction tasks. We included papers that fit into image-based or network-based categories. We found out that the majority of papers focused on classifying MCI vs. AD brain states, which has enabled the discovery of discriminative or altered brain regions and connections. However, very few works aimed to predict MCI progression from early observations. Despite the high importance of reliably identifying which early MCI patient will convert to AD, remain stable or reverse to normal over months/years, predictive models that foresee MCI evolution are still lagging behind.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.alzheimers.org.uk/about-us/policy-and-influencing/dementia-uk-report.

References

  1. Buckner, R.L.: Memory and executive function in aging and AD: multiple factors that cause decline and reserve factors that compensate. Neuron 44, 195–208 (2004)

    Article  Google Scholar 

  2. Misra, C., Fan, Y., Davatzikos, C.: Baseline and longitudinal patterns of brain atrophy in MCI patients, and their use in prediction of short-term conversion to AD: results from ADNI. NeuroImage 44, 1415–1422 (2009)

    Article  Google Scholar 

  3. Bron, E.E., et al.: Standardized evaluation of algorithms for computer-aided diagnosis of dementia based on structural MRI: the CADDementia challenge. NeuroImage 111, 562–579 (2015)

    Article  Google Scholar 

  4. Jack Jr., C.R., et al.: The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods. J. Magn. Reson. Imaging: Official J. Int. Soc. Magn. Reson. Med. 27, 685–691 (2008)

    Article  Google Scholar 

  5. Coupé, P., Eskildsen, S.F., Manjón, J.V., Fonov, V., Collins, D.L.: Simultaneous segmentation and grading of hippocampus for patient classification with Alzheimer’s disease. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011. LNCS, vol. 6893, pp. 149–157. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23626-6_19

    Chapter  Google Scholar 

  6. Liu, F., Wee, C.-Y., Chen, H., Shen, D.: Inter-modality relationship constrained multi-task feature selection for AD/MCI classification. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8149, pp. 308–315. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40811-3_39

    Chapter  Google Scholar 

  7. Suk, H.-I., Shen, D.: Deep learning-based feature representation for AD/MCI classification. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8150, pp. 583–590. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40763-5_72

    Chapter  Google Scholar 

  8. Jie, B., Zhang, D., Cheng, B., Shen, D.: Manifold regularized multi-task feature selection for multi-modality classification in Alzheimer’s disease. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8149, pp. 275–283. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40811-3_35

    Chapter  Google Scholar 

  9. Suk, H.-I., Shen, D.: Clustering-induced multi-task learning for AD/MCI classification. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014. LNCS, vol. 8675, pp. 393–400. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10443-0_50

    Chapter  Google Scholar 

  10. Min, R., Cheng, J., Price, T., Wu, G., Shen, D.: Maximum-margin based representation learning from multiple atlases for Alzheimer’s disease classification. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014. LNCS, vol. 8674, pp. 212–219. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10470-6_27

    Chapter  Google Scholar 

  11. An, L., Adeli, E., Liu, M., Zhang, J., Shen, D.: Semi-supervised hierarchical multimodal feature and sample selection for Alzheimer’s disease diagnosis. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 79–87. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_10

    Chapter  Google Scholar 

  12. Peng, J., An, L., Zhu, X., Jin, Y., Shen, D.: Structured sparse kernel learning for imaging genetics based Alzheimer’s disease diagnosis. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 70–78. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_9

    Chapter  Google Scholar 

  13. Liu, F., Suk, H.-I., Wee, C.-Y., Chen, H., Shen, D.: High-order graph matching based feature selection for Alzheimer’s disease identification. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8150, pp. 311–318. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40763-5_39

    Chapter  Google Scholar 

  14. Liu, M., Zhang, J., Yap, P.-T., Shen, D.: Diagnosis of Alzheimer’s disease using view-aligned hypergraph learning with incomplete multi-modality data. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9900, pp. 308–316. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46720-7_36

    Chapter  Google Scholar 

  15. Liu, M., Du, J., Jie, B., Zhang, D.: Ordinal patterns for connectivity networks in brain disease diagnosis. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9900, pp. 1–9. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46720-7_1

    Chapter  Google Scholar 

  16. Wee, C.-Y., Yap, P.-T., Zhang, D., Denny, K., Wang, L., Shen, D.: Identification of individuals with MCI via multimodality connectivity networks. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011. LNCS, vol. 6892, pp. 277–284. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23629-7_34

    Chapter  Google Scholar 

  17. Wee, C.-Y., Yap, P.-T., Zhang, D., Wang, L., Shen, D.: Constrained sparse functional connectivity networks for MCI classification. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012. LNCS, vol. 7511, pp. 212–219. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33418-4_27

    Chapter  Google Scholar 

  18. Wee, C.-Y., Li, Y., Jie, B., Peng, Z.-W., Shen, D.: Identification of MCI using optimal sparse MAR modeled effective connectivity networks. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8150, pp. 319–327. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40763-5_40

    Chapter  Google Scholar 

  19. Jie, B., Shen, D., Zhang, D.: Brain connectivity hyper-network for MCI classification. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014. LNCS, vol. 8674, pp. 724–732. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10470-6_90

    Chapter  Google Scholar 

  20. Suk, H.-I., Lee, S.-W., Shen, D.: A hybrid of deep network and hidden Markov model for MCI identification with resting-state fMRI. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9349, pp. 573–580. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24553-9_70

    Chapter  Google Scholar 

  21. Chen, X., et al.: High-order resting-state functional connectivity network for MCI classification. Hum. Brain Mapp. 37, 3282–3296 (2016)

    Article  Google Scholar 

  22. Yu, R., Zhang, H., An, L., Chen, X., Wei, Z., Shen, D.: Correlation-weighted sparse group representation for brain network construction in MCI classification. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9900, pp. 37–45. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46720-7_5

    Chapter  Google Scholar 

  23. Leung, K.K., et al.: Increasing power to predict mild cognitive impairment conversion to Alzheimer’s disease using hippocampal atrophy rate and statistical shape models. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010. LNCS, vol. 6362, pp. 125–132. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15745-5_16

    Chapter  Google Scholar 

  24. Schmidt-Richberg, A., et al.: Multi-stage biomarker models for progression estimation in Alzheimer’s disease. In: Ourselin, S., Alexander, D.C., Westin, C.-F., Cardoso, M.J. (eds.) IPMI 2015. LNCS, vol. 9123, pp. 387–398. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19992-4_30

    Chapter  Google Scholar 

  25. Guo, R., Ahn, M., Hongtu Zhu, H.Z.: Spatially weighted principal component analysis for imaging classification. J. Comput. Graph. Stat. 24, 274–296 (2015)

    Article  MathSciNet  Google Scholar 

  26. Batmanghelich, N.K., Dalca, A.V., Sabuncu, M.R., Golland, P.: Joint modeling of imaging and genetics. In: Gee, J.C., Joshi, S., Pohl, K.M., Wells, W.M., Zöllei, L. (eds.) IPMI 2013. LNCS, vol. 7917, pp. 766–777. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38868-2_64

    Chapter  Google Scholar 

  27. Nichols, T.E., et al.: Best practices in data analysis and sharing in neuroimaging using MRI. Nat. Neurosci. 20, 299 (2017)

    Article  Google Scholar 

  28. Sabuncu, M.R., Konukoglu, E., Initiative, A.N., et al.: Clinical prediction from structural brain MRI scans: a large-scale empirical study. Neuroinformatics 13, 31–46 (2015)

    Article  Google Scholar 

  29. Brown, C., Hamarneh, G.: Machine learning on human connectome data from MRI. arXiv:1611.08699v1 (2016)

  30. Karas, G., et al.: A comprehensive study of gray matter loss in patients with Alzheimer’s disease using optimized voxel-based morphometry. Neuroimage 18, 895–907 (2003)

    Article  Google Scholar 

  31. Du, A., et al.: Magnetic resonance imaging of the entorhinal cortex and hippocampus in mild cognitive impairment and Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatry 71, 441–447 (2001)

    Article  Google Scholar 

  32. Iglesias, J.E., Jiang, J., Liu, C.-Y., Tu, Z.: Classification of Alzheimer’s disease using a self-smoothing operator. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011. LNCS, vol. 6893, pp. 58–65. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23626-6_8

    Chapter  Google Scholar 

  33. Zhu, X., Suk, H.-I., Shen, D.: Multi-modality canonical feature selection for Alzheimer’s disease diagnosis. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014. LNCS, vol. 8674, pp. 162–169. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10470-6_21

    Chapter  Google Scholar 

  34. Liu, S., et al.: Multifold Bayesian kernelization in Alzheimer’s diagnosis. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8150, pp. 303–310. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40763-5_38

    Chapter  Google Scholar 

  35. Venkatraghavan, V., Bron, E.E., Niessen, W.J., Klein, S.: A discriminative event based model for Alzheimer’s disease progression modeling. In: Niethammer, M., et al. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 121–133. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59050-9_10

    Chapter  Google Scholar 

  36. Thung, K.-H., Yap, P.-T., Adeli-M, E., Shen, D.: Joint diagnosis and conversion time prediction of progressive mild cognitive impairment (pMCI) using low-rank subspace clustering and matrix completion. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 527–534. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_63

    Chapter  Google Scholar 

  37. Zhu, X., Suk, H.I., Lee, S.W., Shen, D.: Canonical feature selection for joint regression and multi-class identification in Alzheimer’s disease diagnosis. Brain Imaging Behav. 10, 818–828 (2016)

    Article  Google Scholar 

  38. Zhang, J., Li, Q., Caselli, R.J., Thompson, P.M., Ye, J., Wang, Y.: Multi-source multi-target dictionary learning for prediction of cognitive decline. In: Niethammer, M., et al. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 184–197. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59050-9_15

    Chapter  Google Scholar 

  39. Fransson, P.: Spontaneous low-frequency bold signal fluctuations: an fMRI investigation of the resting-state default mode of brain function hypothesis. Hum. Brain Mapp. 26, 15–29 (2005)

    Article  Google Scholar 

  40. Wang, K., et al.: Altered functional connectivity in early Alzheimer’s disease: a resting-state fMRI study. Hum. Brain Mapp. 28, 967–978 (2007)

    Article  Google Scholar 

  41. Wee, C.Y., et al.: Resting-state multi-spectrum functional connectivity networks for identification of MCI patients. PLoS ONE 7, e37828 (2012)

    Article  Google Scholar 

  42. Chen, X., Zhang, H., Shen, D.: Ensemble hierarchical high-order functional connectivity networks for MCI classification. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 18–25. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_3

    Chapter  Google Scholar 

  43. Li, S., et al.: Analysis of group ICA-based connectivity measures from fMRI: application to Alzheimer’s disease. PLoS ONE 7, e49340 (2012)

    Article  Google Scholar 

  44. Wee, C.Y., Yap, P.T., Zhang, D., Wang, L., Shen, D.: Group-constrained sparse fmri connectivity modeling for mild cognitive impairment identification. Brain Struct. Funct. 219, 641–656 (2014)

    Article  Google Scholar 

  45. Hutchison, R.M., et al.: Dynamic functional connectivity: promise, issues, and interpretations. Neuroimage 80, 360–378 (2013)

    Article  Google Scholar 

  46. Serrano-Pozo, A., Frosch, M.P., Masliah, E., Hyman, B.T.: Neuropathological alterations in Alzheimer’s disease. Cold Spring Harb. Perspect. Med. 1, a006189 (2011)

    Article  Google Scholar 

  47. Hu, C., Cheng, L., Sepulcre, J., El Fakhri, G., Lu, Y.M., Li, Q.: Matched signal detection on graphs: theory and application to brain network classification. In: Gee, J.C., Joshi, S., Pohl, K.M., Wells, W.M., Zöllei, L. (eds.) IPMI 2013. LNCS, vol. 7917, pp. 1–12. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38868-2_1

    Chapter  Google Scholar 

  48. Zhu, Y., Zhu, X., Kim, M., Kaufer, D., Wu, G.: A novel dynamic hyper-graph inference framework for computer assisted diagnosis of neuro-diseases. In: Niethammer, M., et al. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 158–169. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59050-9_13

    Chapter  Google Scholar 

  49. Gao, Y., Adeli-M., E., Kim, M., Giannakopoulos, P., Haller, S., Shen, D.: Medical image retrieval using multi-graph learning for MCI diagnostic assistance. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9350, pp. 86–93. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24571-3_11

    Chapter  Google Scholar 

  50. Gao, Y., et al.: MCI identification by joint learning on multiple MRI data. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9350, pp. 78–85. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24571-3_10

    Chapter  Google Scholar 

  51. Wang, D., et al.: Structural brain network constrained neuroimaging marker identification for predicting cognitive functions. In: Gee, J.C., Joshi, S., Pohl, K.M., Wells, W.M., Zöllei, L. (eds.) IPMI 2013. LNCS, vol. 7917, pp. 536–547. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38868-2_45

    Chapter  Google Scholar 

  52. Ithapu, V.K., et al.: Imaging-based enrichment criteria using deep learning algorithms for efficient clinical trials in mild cognitive impairment. Alzheimer’s Dementia 11, 1489–1499 (2015)

    Article  Google Scholar 

  53. Querbes, O., et al.: The Alzheimer’s Disease Neuroimaging Initiative: early diagnosis of Alzheimer’s disease using cortical thickness: impact of cognitive reserve. Brain 132, 2036 (2009)

    Article  Google Scholar 

  54. Mahjoub, I., Mahjoub, M.A., Rekik, I.: Brain multiplexes reveal morphological connectional biomarkers fingerprinting late brain dementia states. Sci. Rep. 8, 4103 (2018)

    Article  Google Scholar 

  55. Lisowska, A., Rekik, I.: Joint pairing and structured mapping of convolutional brain morphological multiplexes for early dementia diagnosis. Brain Connectivity 9, 22–36 (2018)

    Article  Google Scholar 

  56. Cheng, B., Zhang, D., Shen, D.: Domain transfer learning for MCI conversion prediction. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012. LNCS, vol. 7510, pp. 82–90. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33415-3_11

    Chapter  Google Scholar 

  57. Singh, N., Wang, A.Y., Sankaranarayanan, P., Fletcher, P.T., Joshi, S.: Genetic, structural and functional imaging biomarkers for early detection of conversion from MCI to AD. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012. LNCS, vol. 7510, pp. 132–140. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33415-3_17

    Chapter  Google Scholar 

  58. Zhang, J., et al.: Hyperbolic space sparse coding with its application on prediction of Alzheimer’s disease in mild cognitive impairment. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9900, pp. 326–334. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46720-7_38

    Chapter  Google Scholar 

  59. Wang, X., et al.: Predicting interrelated Alzheimer’s disease outcomes via new self-learned structured low-rank model. In: Niethammer, M., et al. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 198–209. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59050-9_16

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Islem Rekik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Soussia, M., Rekik, I. (2019). 7 Years of Developing Seed Techniques for Alzheimer’s Disease Diagnosis Using Brain Image and Connectivity Data Largely Bypassed Prediction for Prognosis. In: Rekik, I., Adeli, E., Park, S. (eds) Predictive Intelligence in Medicine. PRIME 2019. Lecture Notes in Computer Science(), vol 11843. Springer, Cham. https://doi.org/10.1007/978-3-030-32281-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32281-6_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32280-9

  • Online ISBN: 978-3-030-32281-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics