Skip to main content

Modeling the Long-Term Post History for Personalized Hashtag Recommendation

  • Conference paper
  • First Online:
Chinese Computational Linguistics (CCL 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11856))

Included in the following conference series:

Abstract

Hashtag recommendation aims to recommend hashtags when social media users show the intention to insert a hashtag by typing in the hashtag symbol “#” while writing a microblog. Previous methods usually considered the textual information of the post itself or only fixed-length short-term post history. In this paper, we propose to model the long-term post histories of user with a novel neural memory network called the Adaptive neural MEmory Network (AMEN). Compared with existing memory networks, AMEN was specially designed to combine both content and hashtag information from historical posts. In addition, AMEN contains a mechanism to deal with out-of-memory situations. Experimental results on a dataset of Twitter demonstrated that the proposed method significantly outperforms the state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bordes, A., Usunier, N., Chopra, S., Weston, J.: Large-scale simple question answering with memory networks. arXiv preprint arXiv:1506.02075 (2015)

  2. Dey, K., Shrivastava, R., Kaushik, S., Subramaniam, L.V.: EmTagger: a word embedding based novel method for hashtag recommendation on Twitter. arXiv preprint arXiv:1712.01562 (2017)

  3. Dhingra, B., Zhou, Z., Fitzpatrick, D., Muehl, M., Cohen, W.W.: Tweet2Vec: character-based distributed representations for social media. arXiv preprint arXiv:1605.03481 (2016)

  4. Ding, Z., Qiu, X., Zhang, Q., Huang, X.: Learning topical translation model for microblog hashtag suggestion. In: Proceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI 2013) (2013)

    Google Scholar 

  5. Ding, Z., Zhang, Q., Huang, X.: Automatic hashtag recommendation for microblogs using topic-specific translation model. In: Proceedings of COLING 2012: Posters, pp. 265–274 (2012)

    Google Scholar 

  6. Godin, F., Slavkovikj, V., De Neve, W., Schrauwen, B., Van de Walle, R.: Using topic models for Twitter hashtag recommendation. In: Proceedings of the 22nd International Conference on World Wide Web, pp. 593–596. ACM (2013)

    Google Scholar 

  7. Gong, Y., Zhang, Q., Han, X., Huang, X.: Phrase-based hashtag recommendation for microblog posts. Sci. Chin. Inf. Sci. 60(1), 012109 (2017)

    Article  Google Scholar 

  8. Gong, Y., Zhang, Q.: Hashtag recommendation using attention-based convolutional neural network. In: IJCAI, pp. 2782–2788 (2016)

    Google Scholar 

  9. Graves, A., Wayne, G., Danihelka, I.: Neural Turing Machines. Arxiv, pp. 1–26 (2014). https://doi.org/10.3389/neuro.12.006.2007, http://arxiv.org/abs/1410.5401

  10. Huang, H., Zhang, Q., Gong, Y., Huang, X.: Hashtag recommendation using end-to-end memory networks with hierarchical attention. In: Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers, pp. 943–952 (2016)

    Google Scholar 

  11. Kim, Y.: Convolutional neural networks for sentence classification. arXiv preprint arXiv:1408.5882 (2014)

  12. Kowald, D., Pujari, S.C., Lex, E.: Temporal effects on hashtag reuse in Twitter: a cognitive-inspired hashtag recommendation approach. In: Proceedings of the 26th International Conference on World Wide Web, pp. 1401–1410. International World Wide Web Conferences Steering Committee (2017)

    Google Scholar 

  13. Kywe, S., Hoang, T.A., Lim, E.P., Zhu, F.: On recommending hashtags in Twitter networks. In: Social Informatics, pp. 337–350 (2012)

    Google Scholar 

  14. Li, Y., Liu, T., Hu, J., Jiang, J.: Topical co-attention networks for hashtag recommendation on microblogs. Neurocomputing 331, 356–365 (2018)

    Article  Google Scholar 

  15. Li, Y., Liu, T., Jiang, J., Zhang, L.: Hashtag recommendation with topical attention-based LSTM. In: COLING (2016)

    Google Scholar 

  16. Liu, Z., Chen, X., Sun, M.: A simple word trigger method for social tag suggestion. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing, pp. 1577–1588. Association for Computational Linguistics (2011)

    Google Scholar 

  17. She, J., Chen, L.: TOMOHA: topic model-based hashtag recommendation on Twitter. In: Proceedings of the 23rd International Conference on World Wide Web, pp. 371–372. ACM (2014)

    Google Scholar 

  18. Sukhbaatar, S., Weston, J., Fergus, R., et al.: End-to-end memory networks. In: Advances in Neural Information Processing Systems, pp. 2440–2448 (2015)

    Google Scholar 

  19. Tran, V.C., Hwang, D., Nguyen, N.T.: Hashtag recommendation approach based on content and user characteristics. Cybern. Syst. 49, 1–16 (2018)

    Article  Google Scholar 

  20. Wang, Y., Qu, J., Liu, J., Chen, J., Huang, Y.: What to tag your microblog: hashtag recommendation based on topic analysis and collaborative filtering. In: Chen, L., Jia, Y., Sellis, T., Liu, G. (eds.) APWeb 2014. LNCS, vol. 8709, pp. 610–618. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11116-2_58

    Chapter  Google Scholar 

  21. Zhang, Q., Gong, Y., Sun, X., Huang, X.: Time-aware personalized hashtag recommendation on social media. In: Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers, pp. 203–212 (2014)

    Google Scholar 

  22. Zhao, F., Zhu, Y., Jin, H., Yang, L.T.: A personalized hashtag recommendation approach using LDA-based topic model in microblog environment. Future Gener. Comput. Syst. 65, 196–206 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Peng, M., Lin, Y., Zeng, L., Gui, T., Zhang, Q. (2019). Modeling the Long-Term Post History for Personalized Hashtag Recommendation. In: Sun, M., Huang, X., Ji, H., Liu, Z., Liu, Y. (eds) Chinese Computational Linguistics. CCL 2019. Lecture Notes in Computer Science(), vol 11856. Springer, Cham. https://doi.org/10.1007/978-3-030-32381-3_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32381-3_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32380-6

  • Online ISBN: 978-3-030-32381-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics