Skip to main content

Optimal Control of Navigation Systems with Time Delays Using Neural Networks

  • Conference paper
  • First Online:
Machine Learning and Intelligent Communications (MLICOM 2019)

Abstract

In this paper, an online adaptive dynamic programming (ADP) scheme is proposed to achieve the optimal regulation control of navigation control systems subject to time delays with input constraints. The optimal control strategy is developed in virtue of Lyapunov theories and neural networks (NNs) techniques. From a robust control perspective, we investigate the stability on navigation time delay systems concerning input constraints by means of linear matrix inequalities (LMIs) and set up the optimal control policy, on which basis that a novel NN-based approach is proposed. A single NN is used to estimate the performance function, the constrained control and consequently the optimal control policy with the weights online tuned. Finally, numerical examples are demonstrated to illustrate our results.

This research was supported in part by the National Natural Science Foundation of China under Grant 61603179, in part by the China Postdoctoral Science Foundation under Grant 2016M601805, and in part by the Fundamental Research Funds for the Central Universities under Grant NJ20170005.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdellaoui, B.: Maximum principle and dynamic programming approaches of the optimal control of partially observed diffusions. Stochast. Int. J. Probab. Stoch. Process. 9(3), 169–222 (1983)

    MathSciNet  Google Scholar 

  2. Ali, J., Mirza, M.: Initial orientation of inertial navigation system realized through nonlinear modeling and filtering. Measurement 44(5), 793–801 (2011)

    Article  Google Scholar 

  3. Angelov, V.G.: A converse to a contraction mapping theorem in uniform spaces. Nonlin. Anal. 12(10), 989–996 (1988)

    Article  MathSciNet  Google Scholar 

  4. Ben-Tal, A., Nemirovski, A.: Robust convex optimization. Math. Oper. Res. 23(4), 769–805 (1998)

    Article  MathSciNet  Google Scholar 

  5. Bisiaux, M., Cox, M.E., Forrester, D.A., et al.: Possible improvements in meteorology for aircraft navigation. J. Navig. 36(1), 10 (1983)

    Article  Google Scholar 

  6. Branicky, M.S., Borkar, V.S., Mitter, S.K.: A unified framework for hybrid control: model and optimal control theory. IEEE Trans. Autom. Control 43(1), 31–45 (2002)

    Article  MathSciNet  Google Scholar 

  7. Bruce, J.R., Veloso, M.M.: Safe multirobot navigation within dynamics constraints. Proc. IEEE 94(7), 1398–1411 (2006)

    Article  Google Scholar 

  8. Causse, O., Crowley, J.L.: Navigation with constraints for an autonomous mobile robot. Robot. Auton. Syst. 12(3–4), 213–221 (1994)

    Article  Google Scholar 

  9. Chen, Y., Zhang, X.J., Xue, Y.Y.: Application of Kalman filter technology to integrated INS/DR navigation system for land vehicle. Appl. Mech. Mater. 411–414, 912–916 (2013)

    Article  Google Scholar 

  10. Crespo, L.G., Sun, J.: Stochastic optimal control via Bellman’s principle. Automatica 39(12), 2109–2114 (2003)

    Article  MathSciNet  Google Scholar 

  11. Dierks, T., Thumati, B., Jagannathan, S.: Optimal control of unknown affine nonlinear discrete-time systems using offline-trained neural networks with proof of convergence. Neural Netw. 22(5), 851–860 (2009)

    Article  Google Scholar 

  12. Gounley, R., White, R., Gai, E.: Autonomous satellite navigation by stellar refraction. J. Guidance Control Dyn. 7(2), 129–134 (1984)

    Article  Google Scholar 

  13. Himmelberg, C.J., Parthasarathy, T., Vanvleck, F.S.: Optimal plans for dynamic programming problems. Math. Oper. Res. 1(4), 390–394 (1976)

    Article  MathSciNet  Google Scholar 

  14. Huang, Y., Ling, X., Wang, D.: Adapted dynamic programming for nonlinear systems with saturated actuator and time-delay. J. Central South Univ. 44(5), 1881–1887 (2013)

    Google Scholar 

  15. Huang, Y., Lu, W.: Nonlinear optimal control: alternatives to Hamilton-Jacobi equation. In: Proceedings of the IEEE Conference on Decision & Control, pp. 3942–3947 (1996)

    Google Scholar 

  16. Li, C., Huang, T.: On the stability of nonlinear systems with leakage delay. J. Franklin Inst. 346(4), 366–377 (2009)

    Article  MathSciNet  Google Scholar 

  17. Liu, D., Yang, X., Wang, D.: Reinforcement-learning-based robust controller design for continuous-time uncertain nonlinear systems subject to input constraints. IEEE Trans. Cybern. 45(7), 1372–1385 (2015)

    Article  Google Scholar 

  18. Li, X., Gao, H.: A new model transformation of discrete-time systems with time-varying delay and its application to stability analysis. IEEE Trans. Autom. Control 56(9), 2172–2178 (2011)

    Article  MathSciNet  Google Scholar 

  19. Luo, Y., Zhang, H.: Approximate optimal control for a class of nonlinear discrete-time systems with saturating actuators. Progress Nat. Sci. 18(8), 1023–1029 (2008)

    Article  MathSciNet  Google Scholar 

  20. Mac, T.T., Copot, C., Keyser, R.D., et al.: The development of an autonomous navigation system with optimal control of an UAV in partly unknown indoor environment. Mechatronics 49, 187–196 (2018)

    Article  Google Scholar 

  21. Manousiouthakis, V., Chmielewski, D.J.: On constrained infinite-time nonlinear optimal control. Chem. Eng. Sci. 57(1), 105–114 (2002)

    Article  Google Scholar 

  22. Pasik-Duncan, B., Duncan, T.: Stochastic controls: hamiltonian systems and HJB equations. IEEE Trans. Autom. Control 46(11), 1846 (1999)

    Article  Google Scholar 

  23. Rigatos G.: Nonlinear optimal control for autonomous navigation of a truck and trailer system. In: 18th International Conference on Advanced Robotics, Hong Kong, China, pp. 505–510 (2017)

    Google Scholar 

  24. Ross, I.M., Karpenko, M.: A review of pseudo spectral optimal control: from theory to flight. Ann. Rev. Control 36(2), 182–197 (2012)

    Article  Google Scholar 

  25. Saberi, A., Lin, Z., Teel, A.R.: Control of linear systems with saturating actuators. IEEE Trans. Autom. Control 41(3), 368–378 (1996)

    Article  MathSciNet  Google Scholar 

  26. Schwartz, A., Polak, E.: Consistent approximations for optimal control problems based on Runge-Kutta integration. SIAM J. Control Optim. 34(4), 1235–1269 (1996)

    Article  MathSciNet  Google Scholar 

  27. Shen, S.C., Huang, H.J., Wang, Y.J.: Design and evaluation of a micro-electromechanical systems inertial navigation system for underwater vehicle. J. Comput. Theor. Nanosci. 18(1), 16–24 (2012)

    Google Scholar 

  28. Sussmann, H.J., Sontag, E.D., Yang, Y.: A general result on the stabilization of linear systems using bounded controls. IEEE Trans. Autom. Control 39(12), 2411–2425 (2002)

    Article  MathSciNet  Google Scholar 

  29. Tsai, M., Gu, D.: Robust and optimal control. Automatica 33(11), 2095 (1997)

    Article  Google Scholar 

  30. Yang, Y., Gao, W., Zhang, X.: Robust Kalman filtering with constraints: a case study for integrated navigation. J. Geodesy 84(6), 373–381 (2010)

    Article  Google Scholar 

  31. Zhang, M., Lu, Z.: Lyapunov-based analyse of weights’ convergence on backpropagation neural networks algorithm. Mini-micro Syst. 25(1), 93–95 (2004)

    Google Scholar 

  32. Zheng, H., Tuo, X., Peng, S.: Determination of gamma point source efficiency based on a backpropagation neural network. Nuclear Sci. Tech. 29(5), 61 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhu, J., Hou, Y. (2019). Optimal Control of Navigation Systems with Time Delays Using Neural Networks. In: Zhai, X., Chen, B., Zhu, K. (eds) Machine Learning and Intelligent Communications. MLICOM 2019. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 294. Springer, Cham. https://doi.org/10.1007/978-3-030-32388-2_60

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32388-2_60

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32387-5

  • Online ISBN: 978-3-030-32388-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics