Skip to main content

A Machine Learning Framework for Accurate Functional Connectome Fingerprinting and an Application of a Siamese Network

  • Conference paper
  • First Online:
Connectomics in NeuroImaging (CNI 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11848))

Included in the following conference series:

Abstract

The goal of functional connectome (FC) fingerprinting is to uniquely identify subjects based on their functional connectome. In recent years, interest in this problem has increased substantially with efforts made to understand the factors that affect the accuracy of fingerprinting and to develop more effective approaches. In this work, we developed a novel machine learning framework for FC fingerprinting. Specifically, while existing approaches match a query FC with a reference FC based on a correlation score between the two FCs, our framework employed a machine learning model to determine if two FCs are similar. This allowed us to capture more complex features from FCs and also to capture non-linear similarities that may exist among FCs. We explored multiple machine learning algorithms that include a Siamese neural network and several classification algorithms. From our experiments, we observed that the Siamese network outperformed other classification models, with an FC fingerprinting accuracy of \(99.89\%\).

A. Shojaee and K. Li—Contributed equally to this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. HCP documentation. https://www.humanconnectome.org/storage/app/media/documentation/s1200/HCP1200-DenseConnectome+PTN+Appendix-July2017.pdf

  2. Airan, R.D., Vogelstein, J.T., Pillai, J.J., Caffo, B., Pekar, J.J., Sair, H.I.: Factors affecting characterization and localization of inter-individual differences in functional connectivity using MRI. Hum. Brain Mapp. 37(5), 1986–1997 (2016)

    Article  Google Scholar 

  3. Amico, E., Goñi, J.: The quest for identifiability in human functional connectomes. Sci. Rep. 8(1), 8254 (2018)

    Article  Google Scholar 

  4. Atluri, G., MacDonald III, A., Lim, K.O., Kumar, V.: The brain-network paradigm: using functional imaging data to study how the brain works. Computer 49(10), 65–71 (2016)

    Article  Google Scholar 

  5. Bargmann, C.I., Marder, E.: From the connectome to brain function. Nat. Methods 10(6), 483 (2013)

    Article  Google Scholar 

  6. Bromley, J., Guyon, I., LeCun, Y., Säckinger, E., Shah, R.: Signature verification using a “siamese” time delay neural network. In: Advances in Neural Information Processing Systems, pp. 737–744 (1994)

    Google Scholar 

  7. Bullmore, E., Sporns, O.: The economy of brain network organization. Nat. Rev. Neurosci. 13(5), 336 (2012)

    Article  Google Scholar 

  8. Castellanos, F.X., Di Martino, A., Craddock, R.C., Mehta, A.D., Milham, M.P.: Clinical applications of the functional connectome. Neuroimage 80, 527–540 (2013)

    Article  Google Scholar 

  9. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on graphs with fast localized spectral filtering. In: Advances in Neural Information Processing Systems, pp. 3844–3852 (2016)

    Google Scholar 

  10. Dubois, J., Adolphs, R.: Building a science of individual differences from fMRI. Trends Cogn. Sci. 20(6), 425–443 (2016)

    Article  Google Scholar 

  11. Finn, E.S., et al.: Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity. Nat. Neurosci. 18(11), 1664 (2015)

    Article  Google Scholar 

  12. Hammond, D.K., Vandergheynst, P., Gribonval, R.: Wavelets on graphs via spectral graph theory. Appl. Comput. Harmon. Anal. 30(2), 129–150 (2011)

    Article  MathSciNet  Google Scholar 

  13. Kelly, C., Biswal, B.B., Craddock, R.C., Castellanos, F.X., Milham, M.P.: Characterizing variation in the functional connectome: promise and pitfalls. Trends Cogn. Sci. 16(3), 181–188 (2012)

    Article  Google Scholar 

  14. Ktena, S.I., et al.: Distance metric learning using graph convolutional networks: application to functional brain networks. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10433, pp. 469–477. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66182-7_54

    Chapter  Google Scholar 

  15. Kumar, B., Carneiro, G., Reid, I., et al.: Learning local image descriptors with deep siamese and triplet convolutional networks by minimising global loss functions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5385–5394 (2016)

    Google Scholar 

  16. Li, K., Atluri, G.: Towards effective functional connectome fingerprinting. In: Wu, G., Rekik, I., Schirmer, M.D., Chung, A.W., Munsell, B. (eds.) CNI 2018. LNCS, vol. 11083, pp. 107–116. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00755-3_12

    Chapter  Google Scholar 

  17. Peña-Gómez, C., Avena-Koenigsberger, A., Sepulcre, J., Sporns, O.: Spatiotemporal network markers of individual variability in the human functional connectome. Cereb. Cortex 28, 2922–2934 (2017)

    Article  Google Scholar 

  18. Qi, Y., Song, Y.Z., Zhang, H., Liu, J.: Sketch-based image retrieval via siamese convolutional neural network. In: 2016 IEEE International Conference on Image Processing (ICIP), pp. 2460–2464. IEEE (2016)

    Google Scholar 

  19. Rosen, B.R., Savoy, R.L.: fMRI at 20: has it changed the world? Neuroimage 62(2), 1316–1324 (2012)

    Article  Google Scholar 

  20. Shehzad, Z., et al.: The resting brain: unconstrained yet reliable. Cereb. Cortex 19(10), 2209–2229 (2009)

    Article  Google Scholar 

  21. Shuman, D.I., Narang, S.K., Frossard, P., Ortega, A., Vandergheynst, P.: The emerging field of signal processing on graphs: extending high-dimensional data analysis to networks and other irregular domains. arXiv preprint arXiv:1211.0053 (2012)

  22. Smith, S.M., et al.: Resting-state fMRI in the human connectome project. Neuroimage 80, 144–168 (2013)

    Article  Google Scholar 

  23. Sporns, O.: The human connectome: a complex network. Ann. N. Y. Acad. Sci. 1224(1), 109–125 (2011)

    Article  Google Scholar 

  24. Waller, L., et al.: Evaluating the replicability, specificity, and generalizability of connectome fingerprints. Neuroimage 158, 371–377 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by NSF Grant IIS-1850204. The computational work is performed using the Data Analytics Cluster acquired through the Ohio Dept. of Higher Education’s RAPIDS grant in 2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gowtham Atluri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shojaee, A., Li, K., Atluri, G. (2019). A Machine Learning Framework for Accurate Functional Connectome Fingerprinting and an Application of a Siamese Network. In: Schirmer, M., Venkataraman, A., Rekik, I., Kim, M., Chung, A. (eds) Connectomics in NeuroImaging. CNI 2019. Lecture Notes in Computer Science(), vol 11848. Springer, Cham. https://doi.org/10.1007/978-3-030-32391-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32391-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32390-5

  • Online ISBN: 978-3-030-32391-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics