Skip to main content

Mental Workload Monitoring: New Perspectives from Neuroscience

  • Conference paper
  • First Online:
Human Mental Workload: Models and Applications (H-WORKLOAD 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1107))

Abstract

Mental Workload is nowadays a keyword used and sometimes abused in life sciences. The present chapter aims at introducing the concept of mental workload, its relevance for Human Factor research and the current needs of applied disciplines in a clear and effective way. This paper will present a state-of-art overview of recent outcomes produced by neuroscientific research to highlight current trends in this field. The present paper will offer an overview of and some examples of what neuroscience has to offer to mental workload-related research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wickens, C.D.: Processing resources in attention. In: Varieties of Attention, pp. 62–102 (1984)

    Google Scholar 

  2. Eggemeier, F.T., Wilson, G.F., Kramer, A.F., Damos, D.L.: Workload assessment in multi-task environments. In: Damos, D.L. (ed.) Multiple-Task Performance, pp. 207–216. Taylor & Francis, London (1991)

    Google Scholar 

  3. Hart, S.G., Staveland, L.E.: Development of NASA-TLX (Task Load Index): results of empirical and theoretical research. In: Hancock, P.A., Meshkati, N. (eds.) Advances in Psychology, vol. 52, pp. 139–183. North-Holland, Amsterdam (1988)

    Google Scholar 

  4. Gopher, D., Donchin, E.: Workload: an examination of the concept. In: Boff, K.R., Kaufman, L., Thomas, J.P. (eds.) Handbook of Perception and Human Performance. Cognitive Processes and Performance, vol. 2, pp. 1–49. John Wiley & Sons, Oxford (1986)

    Google Scholar 

  5. Cain, B.: A Review of the Mental Workload Literature, July 2007

    Google Scholar 

  6. Baldwin, C.L.: Commentary. Theor. Issues Ergon. Sci. 4(1–2), 132–141 (2003)

    Article  Google Scholar 

  7. Wickens, C.D., Hollands, J.G., Banbury, S., Parasuraman, R.: Engineering Psychology & Human Performance, 4th edn. Psychology Press, Boston (2012)

    Google Scholar 

  8. Feyer, A., Williamson, A.M.: Human factors in accident modelling. In: Encyclopaedia of Occupational Health and Safety (2011)

    Google Scholar 

  9. Helmreich, R.L.: On error management: lessons from aviation. BMJ 320(7237), 781–785 (2000)

    Article  Google Scholar 

  10. Brennan, T.A., et al.: Incidence of adverse events and negligence in hospitalized patients. Results of the Harvard Medical Practice Study I. N. Engl. J. Med. 324(6), 370–376 (1991)

    Article  Google Scholar 

  11. Leape, L.L., et al.: The nature of adverse events in hospitalized patients. Results of the Harvard Medical Practice Study II. N. Engl. J. Med. 324(6), 377–384 (1991)

    Article  Google Scholar 

  12. Wilson, R.M., Runciman, W.B., Gibberd, R.W., Harrison, B.T., Newby, L., Hamilton, J.D.: The quality in Australian health care study. Med. J. Aust. 163(9), 458–471 (1995)

    Article  Google Scholar 

  13. Vincent, C., Neale, G., Woloshynowych, M.: Adverse events in British hospitals: preliminary retrospective record review. BMJ 322(7285), 517–519 (2001)

    Article  Google Scholar 

  14. Kohn, L.T., Corrigan, J.M., Donaldson, M.S.: To Err Is Human: Building a Safer Health System, vol. 6. National Academies Press, Washington, DC (2000)

    Google Scholar 

  15. Aberg, L., Rimmö, P.A.: Dimensions of aberrant driver behaviour. Ergonomics 41(1), 39–56 (1998)

    Article  Google Scholar 

  16. Arico, P., et al.: Human factors and neurophysiological metrics in air traffic control: a critical review. IEEE Rev. Biomed. Eng. PP(99), 1 (2017)

    Google Scholar 

  17. Borghini, G., Aricò, P., Di Flumeri, G., Babiloni, F.: Industrial Neuroscience in Aviation: Evaluation of Mental States in Aviation Personnel. BIOSYSROB, vol. 18. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58598-7

    Book  Google Scholar 

  18. Salmon, P., Regan, M., Johnston, I.: Human Error and Road Transport: Phase One - Literature Review. Monash University Accident Research Centre (2005)

    Google Scholar 

  19. Shappel, S.A., Wiegmann, D.A.: The human factors analysis and classification system - HFACS. In: Federal Aviation Administration, Washington, DC, DOT/FAA/AM-00/7 (2000)

    Google Scholar 

  20. Stanton, N.A., et al.: Predicting design induced pilot error using HET (human error template) - A new formal human error identification method for flight decks, 1 February 2006. https://dspace.lib.cranfield.ac.uk/handle/1826/1158. Accessed 25 Nov 2015

  21. Rankin, W., Hibit, R., Allen, J., Sargent, R.: Development and evaluation of the Maintenance Error Decision Aid (MEDA) process. Int. J. Ind. Ergon. 26(2), 261–276 (2000)

    Article  Google Scholar 

  22. Shorrock, S.T., Kirwan, B.: Development and application of a human error identification tool for air traffic control. Appl. Ergon. 33(4), 319–336 (2002)

    Article  Google Scholar 

  23. Edwards, T., Martin, L., Bienert, N., Mercer, J.: The relationship between workload and performance in air traffic control: exploring the influence of levels of automation and variation in task demand. In: Human Mental Workload: Models and Applications, pp. 120–139 (2017)

    Google Scholar 

  24. Lawton, R., Ward, N.J.: A systems analysis of the Ladbroke Grove rail crash. Accid. Anal. Prev. 37(2), 235–244 (2005)

    Article  Google Scholar 

  25. Reason, J.: Human error. West. J. Med. 172(6), 393–396 (2000)

    Article  Google Scholar 

  26. Rumar, K.: The basic driver error: late detection. Ergonomics 33(10–11), 1281–1290 (1990)

    Article  Google Scholar 

  27. Kirwan, B.: Human error identification techniques for risk assessment of high risk systems–Part 1: review and evaluation of techniques. Appl. Ergon. 29(3), 157–177 (1998)

    Article  Google Scholar 

  28. Sexton, J.B., Thomas, E.J., Helmreich, R.L.: Error, stress, and teamwork in medicine and aviation: cross sectional surveys. BMJ 320(7237), 745–749 (2000)

    Article  Google Scholar 

  29. Nelson, W.R., Haney, L.N., Ostrom, L.T., Richards, R.E.: Structured methods for identifying and correcting potential human errors in space operations. Acta Astronaut. 43(3–6), 211–222 (1998)

    Article  Google Scholar 

  30. Rasmussen, J.: Human errors. A taxonomy for describing human malfunction in industrial installations. J. Occup. Accid. 4(2), 311–333 (1982)

    Article  Google Scholar 

  31. Rasmussen, J.: The definition of human error and a taxonomy for technical system design. In: New Technology and Human Error, pp. 23–30 (1987)

    Google Scholar 

  32. Reason, J.: Human error: models and management. BMJ 320(7237), 768–770 (2000)

    Article  Google Scholar 

  33. Yerkes, R.M., Dodson, J.D.: The relation of strength of stimulus to rapidity of habit-formation. J. Comp. Neurol. Psychol. 18(5), 459–482 (1908)

    Article  Google Scholar 

  34. Westman, M., Eden, D.: The inverted-U relationship between stress and performance: a field study. Work Stress 10(2), 165–173 (1996)

    Article  Google Scholar 

  35. Rapolienė, L., Razbadauskas, A., Jurgelėnas, A.: The reduction of distress using therapeutic geothermal water procedures in a randomized controlled clinical trial. Adv. Prev. Med. (2015). https://www.hindawi.com/journals/apm/2015/749417/abs/. Accessed 1 Aug 2019

  36. Calabrese, E.J.: Neuroscience and hormesis: overview and general findings. Crit. Rev. Toxicol. 38(4), 249–252 (2008)

    Article  Google Scholar 

  37. Warm, J.S., Parasuraman, R., Matthews, G.: Vigilance requires hard mental work and is stressful. Hum. Factors 50(3), 433–441 (2008)

    Article  Google Scholar 

  38. Fan, J., Smith, A.P.: The impact of workload and fatigue on performance. In: Longo, L., Leva, M.C. (eds.) H-WORKLOAD 2017. CCIS, vol. 726, pp. 90–105. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61061-0_6

    Chapter  Google Scholar 

  39. Kirsh, D.: A few thoughts on cognitive overload. Intellectica 30, 19–51 (2000)

    Google Scholar 

  40. Wickens, C.D.: Multiple resources and mental workload. Hum. Factors 50(3), 449–455 (2008)

    Article  Google Scholar 

  41. Wickens, C.D.: Mental workload: assessment, prediction and consequences. In: Longo, L., Leva, M.C. (eds.) H-WORKLOAD 2017. CCIS, vol. 726, pp. 18–29. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61061-0_2

    Chapter  Google Scholar 

  42. Kantowitz, B.H., Casper, P.A.: Human workload in aviation. In: Human Error in Aviation, pp. 123–153. Routledge, London (2017)

    Chapter  Google Scholar 

  43. Gerjets, P., Walter, C., Rosenstiel, W., Bogdan, M., Zander, T.O.: Cognitive state monitoring and the design of adaptive instruction in digital environments: lessons learned from cognitive workload assessment using a passive brain-computer interface approach. Front. Neurosci. 8, 1–21 (2014)

    Article  Google Scholar 

  44. Byrne, A.: Measurement of mental workload in clinical medicine: a review study. Anesthesiol. Pain Med. 1(2), 90 (2011)

    Article  Google Scholar 

  45. O’Donnell, R.D., Eggemeier, F.T.: Workload assessment methodology. In: Handbook of Perception and Human Performance, vol. 2. Wiley, New York (1986)

    Google Scholar 

  46. Orru, G., Longo, L.: The evolution of cognitive load theory and the measurement of its intrinsic, extraneous and Germane loads: a review. In: Longo, L., Leva, M.C. (eds.) H-WORKLOAD 2018. CCIS, vol. 1012, pp. 23–48. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14273-5_3

    Chapter  Google Scholar 

  47. Scerbo, M.W.: Theoretical perspectives on adaptive automation. In: Parasuraman, R., Mouloua, M. (eds.) Automation and Human Performance: Theory and Applications, pp. 37–63. Lawrence Erlbaum Associates, Inc., Hillsdale (1996)

    Google Scholar 

  48. Parasuraman, R.: Neuroergonomics: research and practice. Theor. Issues Ergon. Sci. 4(1–2), 5–20 (2003)

    Article  Google Scholar 

  49. Tattersall, A.J., Foord, P.S.: An experimental evaluation of instantaneous self-assessment as a measure of workload. Ergonomics 39(5), 740–748 (1996)

    Article  Google Scholar 

  50. Aricò, P., Borghini, G., Di Flumeri, G., Colosimo, A., Pozzi, S., Babiloni, F.: A passive Brain-Computer Interface (p-BCI) application for the mental workload assessment on professional Air Traffic Controllers (ATCOs) during realistic ATC tasks. Prog. Brain Res. 228, 295–328 (2016)

    Article  Google Scholar 

  51. Borghini, G., et al.: Quantitative assessment of the training improvement in a motor-cognitive task by using EEG, ECG and EOG signals. Brain Topogr. 29(1), 149–161 (2016)

    Article  Google Scholar 

  52. Di Flumeri, G., et al.: On the use of cognitive neurometric indexes in aeronautic and air traffic management environments. In: Blankertz, B., Jacucci, G., Gamberini, L., Spagnolli, A., Freeman, J. (eds.) Symbiotic 2015. LNCS, vol. 9359, pp. 45–56. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24917-9_5

    Chapter  Google Scholar 

  53. Mühl, C., Jeunet, C., Lotte, F.: EEG-based workload estimation across affective contexts. Neuroprosthetics 8, 114 (2014)

    Google Scholar 

  54. Wierwille, W.W., Eggemeier, F.T.: Recommendations for mental workload measurement in a test and evaluation environment. Hum. Factors J. Hum. Factors Ergon. Soc. 35(2), 263–281 (1993)

    Article  Google Scholar 

  55. Endsley, M.R.: Measurement of situation awareness in dynamic systems. Hum. Factors 37(1), 65–84 (1995)

    Article  Google Scholar 

  56. Borghini, G., et al.: EEG-based cognitive control behaviour assessment: an ecological study with professional air traffic controllers. Sci. Rep. 7(1), 547 (2017)

    Article  Google Scholar 

  57. Dehais, F., et al.: Monitoring pilot’s cognitive fatigue with engagement features in simulated and actual flight conditions using an hybrid fNIRS-EEG passive BCI. In: 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 544–549 (2018)

    Google Scholar 

  58. Borghini, G., et al.: A new perspective for the training assessment: machine learning-based neurometric for augmented user’s evaluation. Front. Neurosci. 11, 325 (2017)

    Article  Google Scholar 

  59. Di Flumeri, G., et al.: EEG-based mental workload neurometric to evaluate the impact of different traffic and road conditions in real driving settings. Front. Hum. Neurosci. 12, 509 (2018)

    Article  Google Scholar 

  60. Berka, C., et al.: Real-time analysis of EEG indexes of alertness, cognition, and memory acquired with a wireless EEG headset. Int. J. Hum. Comput. Interact. 17(2), 151–170 (2004)

    Article  Google Scholar 

  61. Dehais, F., Roy, R.N., Gateau, T., Scannella, S.: Auditory alarm misperception in the Cockpit: an eeg study of inattentional deafness. In: Schmorrow, D.D.D., Fidopiastis, C.M.M. (eds.) AC 2016, Part I. LNCS (LNAI), vol. 9743, pp. 177–187. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39955-3_17

    Chapter  Google Scholar 

  62. McMahan, T., Parberry, I., Parsons, T.D.: Evaluating player task engagement and arousal using electroencephalography. Procedia Manuf. 3, 2303–2310 (2015)

    Article  Google Scholar 

  63. Cartocci, G., Maglione, A.G., Rossi, D., Modica, E., Borghini, G., Malerba, P., Piccioni, L.O., Babiloni, F.: Alpha and Theta EEG variations as indices of listening effort to be implemented in neurofeedback among cochlear implant users. In: Ham, J., Spagnolli, A., Blankertz, B., Gamberini, L., Jacucci, G. (eds.) Symbiotic 2017. LNCS, vol. 10727, pp. 30–41. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91593-7_4

    Chapter  Google Scholar 

  64. Ahlstrom, U., Ohneiser, O., Caddigan, E.: Portable weather applications for general aviation pilots. Hum. Factors 58(6), 864–885 (2016)

    Article  Google Scholar 

  65. Giraudet, L., Imbert, J.-P., Bérenger, M., Tremblay, S., Causse, M.: The neuroergonomic evaluation of human machine interface design in air traffic control using behavioral and EEG/ERP measures. Behav. Brain Res. 294, 246–253 (2015)

    Article  Google Scholar 

  66. Prinzel, L.J., Freeman, F.G., Scerbo, M.W., Mikulka, P.J., Pope, A.T.: A closed-loop system for examining psychophysiological measures for adaptive task allocation. Int. J. Aviat. Psychol. 10(4), 393–410 (2000)

    Article  Google Scholar 

  67. Jänig, W.: Autonomic nervous system. In: Schmidt, R.F., Thews, G. (eds.) Human Physiology, pp. 333–370. Springer, Heidelberg (1989)

    Chapter  Google Scholar 

  68. Borghini, G., Astolfi, L., Vecchiato, G., Mattia, D., Babiloni, F.: Measuring neurophysiological signals in aircraft pilots and car drivers for the assessment of mental workload, fatigue and drowsiness. Neurosci. Biobehav. Rev. 44, 58–75 (2014)

    Article  Google Scholar 

  69. VaezMousavi, S.M., Barry, R.J., Rushby, J.A., Clarke, A.R.: Arousal and activation effects on physiological and behavioral responding during a continuous performance task. Acta Neurobiol. Exp. (Warsz.) 67(4), 461–470 (2007)

    Google Scholar 

  70. Sloan, R.P., et al.: Effect of mental stress throughout the day on cardiac autonomic control. Biol. Psychol. 37(2), 89–99 (1994)

    Article  Google Scholar 

  71. Aricò, P., et al.: Adaptive automation triggered by EEG-Based mental workload index: a passive brain-computer interface application in realistic air traffic control environment. Front. Hum. Neurosci. 10, 539 (2016)

    Article  Google Scholar 

  72. Cartocci, G., et al.: Gender and age related effects while watching TV advertisements: an EEG study. Comput. Intell. Neurosci. 2016, 10 (2016)

    Article  Google Scholar 

  73. Di Flumeri, G., et al.: EEG-based approach-withdrawal index for the pleasantness evaluation during taste experience in realistic settings. In: 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3228–3231 (2017)

    Google Scholar 

  74. Mihajlović, V., Grundlehner, B., Vullers, R., Penders, J.: Wearable, wireless EEG solutions in daily life applications: what are we missing? IEEE J. Biomed. Health Inform. 19(1), 6–21 (2015)

    Article  Google Scholar 

  75. Di Flumeri, G., Aricò, P., Borghini, G., Sciaraffa, N., Di Florio, A., Babiloni, F.: The dry revolution: evaluation of three different EEG dry electrode types in terms of signal spectral features, mental states classification and usability. Sensors 19(6), 1365 (2019)

    Article  Google Scholar 

  76. Izzetoglu, K., et al.: UAV operators workload assessment by optical brain imaging technology (fNIR). In: Valavanis, K.P., Vachtsevanos, G.J. (eds.) Handbook of Unmanned Aerial Vehicles, pp. 2475–2500. Springer, Dordrecht (2015). https://doi.org/10.1007/978-90-481-9707-1_22

    Chapter  Google Scholar 

  77. Gateau, T., Ayaz, H., Dehais, F.: In silico versus over the clouds: On-the-fly mental state estimation of aircraft pilots, using a functional near infrared spectroscopy based passive-BCI. Front. Hum. Neurosci. 12, 187 (2018)

    Article  Google Scholar 

  78. Arico, P., et al.: Human factors and neurophysiological metrics in air traffic control: a critical review. IEEE Rev. Biomed. Eng. 10, 250–263 (2017)

    Article  Google Scholar 

  79. Borghini, G., et al.: Neurophysiological measures for users’ training objective assessment during simulated robot-assisted laparoscopic surgery. In: 2016 IEEE 38th Annual International Conference of the Engineering in Medicine and Biology Society (EMBC), pp. 981–984 (2016)

    Google Scholar 

  80. Matthews, G., Reinerman-Jones, L.E., Barber, D.J., Abich IV, J.: The psychometrics of mental workload: multiple measures are sensitive but divergent. Hum. Factors 57(1), 125–143 (2015)

    Article  Google Scholar 

  81. Dehais, F., Peysakhovich, V., Scannella, S., Fongue, J., Gateau, T.: Automation surprise in aviation: real-time solutions. In: Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, pp. 2525–2534 (2015)

    Google Scholar 

  82. Fallahi, M., Motamedzade, M., Heidarimoghadam, R.H., Soltanian, A.R., Miyake, S.: Effects of mental workload on physiological and subjective responses during traffic density monitoring: a field study. Appl. Ergon. 52, 95–103 (2016)

    Article  Google Scholar 

  83. Fallahi, M., Motamedzade, M., Heidarimoghadam, R., Soltanian, A.R., Miyake, S.: Assessment of operators’ mental workload using physiological and subjective measures in cement, city traffic and power plant control centers. Health Promot. Perspect. 6(2), 96 (2016)

    Article  Google Scholar 

  84. Cherubino, P., et al.: neuroelectrical indexes for the study of the efficacy of TV advertising stimuli. In: Nermend, K., Łatuszyńska, M. (eds.) Selected Issues in Experimental Economics. SPBE, pp. 355–371. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-28419-4_22

    Chapter  Google Scholar 

  85. Di Flumeri, G., et al.: EEG frontal asymmetry related to pleasantness of olfactory stimuli in young subjects. In: Nermend, K., Łatuszyńska, M. (eds.) Selected Issues in Experimental Economics. SPBE, pp. 373–381. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-28419-4_23

    Chapter  Google Scholar 

  86. Kong, W., Lin, W., Babiloni, F., Hu, S., Borghini, G.: Investigating driver fatigue versus alertness using the granger causality network. Sensors 15(8), 19181–19198 (2015)

    Article  Google Scholar 

  87. Ramnani, N., Owen, A.M.: Anterior prefrontal cortex: insights into function from anatomy and neuroimaging. Nat. Rev. Neurosci. 5(3), 184–194 (2004)

    Article  Google Scholar 

  88. Wood, J.N., Grafman, J.: Human prefrontal cortex: processing and representational perspectives. Nat. Rev. Neurosci. 4(2), 139–147 (2003)

    Article  Google Scholar 

  89. Cabeza, R., Nyberg, L.: Imaging cognition II: an empirical review of 275 PET and fMRI studies. J. Cogn. Neurosci. 12(1), 1–47 (2000)

    Article  Google Scholar 

  90. Borghini, G., et al.: Frontal EEG theta changes assess the training improvements of novices in flight simulation tasks. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2013, 6619–6622 (2013)

    Google Scholar 

  91. Ryu, K., Myung, R.: Evaluation of mental workload with a combined measure based on physiological indices during a dual task of tracking and mental arithmetic. Int. J. Ind. Ergon. 35(11), 991–1009 (2005)

    Article  Google Scholar 

  92. Medvedev, A.V., Kainerstorfer, J., Borisov, S.V., Barbour, R.L., VanMeter, J.: Event-related fast optical signal in a rapid object recognition task: improving detection by the independent component analysis. Brain Res. 1236, 145–158 (2008)

    Article  Google Scholar 

  93. Murkin, J.M., Arango, M.: Near-infrared spectroscopy as an index of brain and tissue oxygenation. Br. J. Anaesth. 103(Suppl. 1), i3–i13 (2009)

    Article  Google Scholar 

  94. Derosière, G., Mandrick, K., Dray, G., Ward, T.E., Perrey, S.: NIRS-measured prefrontal cortex activity in neuroergonomics: strengths and weaknesses. Front. Hum. Neurosci. 7, 583 (2013)

    Article  Google Scholar 

  95. Boucsein, W., Backs, R.W.: Engineering Psychophysiology: Issues and Applications. CRC Press, Boca Raton (2000)

    Google Scholar 

  96. Desmond, P.A., Hancock, P.A.: Active and Passive Fatigue States. Stress Workload Fatigue (2001)

    Google Scholar 

  97. Gevins, A., Smith, M.E.: Neurophysiological measures of cognitive workload during human-computer interaction. Theor. Issues Ergon. Sci. 4(1–2), 113–131 (2003)

    Article  Google Scholar 

  98. Smit, A.S., Eling, P.A.T.M., Coenen, A.M.L.: Mental effort affects vigilance enduringly: after-effects in EEG and behavior. Int. J. Psychophysiol. Off. J. Int. Organ. Psychophysiol. 53(3), 239–243 (2004)

    Google Scholar 

  99. Brookings, J.B., Wilson, G.F., Swain, C.R.: Psychophysiological responses to changes in workload during simulated air traffic control. Biol. Psychol. 42(3), 361–377 (1996)

    Article  Google Scholar 

  100. Gevins, A., Smith, M.E., McEvoy, L., Yu, D.: High-resolution EEG mapping of cortical activation related to working memory: effects of task difficulty, type of processing, and practice. Cereb. Cortex 7(4), 374–385 (1997)

    Article  Google Scholar 

  101. Jaušovec, N., Jaušovec, K.: Working memory training: improving intelligence–changing brain activity. Brain Cogn. 79(2), 96–106 (2012)

    Article  Google Scholar 

  102. Klimesch, W., Doppelmayr, M., Pachinger, T., Ripper, B.: Brain oscillations and human memory: EEG correlates in the upper alpha and theta band. Neurosci. Lett. 238(1–2), 9–12 (1997)

    Article  Google Scholar 

  103. Venables, L., Fairclough, S.H.: The influence of performance feedback on goal-setting and mental effort regulation. Motiv. Emot. 33(1), 63–74 (2009)

    Article  Google Scholar 

  104. Shou, G., Ding, L., Dasari, D.: Probing neural activations from continuous EEG in a real-world task: time-frequency independent component analysis. J. Neurosci. Methods 209(1), 22–34 (2012)

    Article  Google Scholar 

  105. Arico, P., et al.: Towards a multimodal bioelectrical framework for the online mental workload evaluation. In: 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3001–3004 (2014)

    Google Scholar 

  106. Göhring, D., Latotzky, D., Wang, M., Rojas, R.: Semi-autonomous car control using brain computer interfaces. In: Lee, S., Cho, H., Yoon, K.J., Lee, J. (eds.) Intelligent Autonomous Systems 12. AISC, vol. 194, pp. 393–408. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-33932-5_37

    Chapter  Google Scholar 

  107. Kohlmorgen, J., et al.: Improving human performance in a real operating environment through real-time mental workload detection (2007)

    Google Scholar 

  108. Dorneich, M.C., Ververs, P.M., Mathan, S., Whitlow, S.D.: A joint human-automation cognitive system to support rapid decision-making in hostile environments. In: 2005 IEEE International Conference on Systems, Man and Cybernetics, vol. 3, pp. 2390–2395 (2005)

    Google Scholar 

  109. Fuchs, S., Hale, K.S., Stanney, K.M., Juhnke, J., Schmorrow, D.D.: Enhancing mitigation in augmented cognition. J. Cogn. Eng. Decis. Mak. 1(3), 309–326 (2007)

    Article  Google Scholar 

  110. Wolpaw, J.R., Birbaumer, N., McFarland, D.J., Pfurtscheller, G., Vaughan, T.M.: Brain-computer interfaces for communication and control. Clin. Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol. 113(6), 767–791 (2002)

    Article  Google Scholar 

  111. Wolpaw, J.W., Wolpaw, E.W.: Brain-Computer Interfaces: Principles and Practice. Oxford University Press, Oxford (2012)

    Book  Google Scholar 

  112. Aloise, F., et al.: A covert attention P300-based brain-computer interface: Geospell. Ergonomics 55(5), 538–551 (2012)

    Article  Google Scholar 

  113. Riccio, A., et al.: Hybrid P300-based brain-computer interface to improve usability for people with severe motor disability: electromyographic signals for error correction during a spelling task. Arch. Phys. Med. Rehabil. 96(3 Suppl.), S54–S61 (2015)

    Article  Google Scholar 

  114. Blankertz, B., et al.: The Berlin brain–computer interface: non-medical uses of BCI technology. Front. Neurosci. 4, 198 (2010)

    Article  Google Scholar 

  115. Müller, K.-R., Tangermann, M., Dornhege, G., Krauledat, M., Curio, G., Blankertz, B.: Machine learning for real-time single-trial EEG-analysis: from brain-computer interfacing to mental state monitoring. J. Neurosci. Methods 167(1), 82–90 (2008)

    Article  Google Scholar 

  116. Zander, T.O., Kothe, C., Welke, S., Roetting, M.: Utilizing secondary input from passive brain-computer interfaces for enhancing human-machine interaction. In: Schmorrow, D.D., Estabrooke, I.V., Grootjen, M. (eds.) FAC 2009. LNCS (LNAI), vol. 5638, pp. 759–771. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02812-0_86

    Chapter  Google Scholar 

  117. Aricò, P., Borghini, G., Di Flumeri, G., Sciaraffa, N., Colosimo, A., Babiloni, F.: Passive BCI in operational environments: insights, recent advances, and future trends. IEEE Trans. Biomed. Eng. 64(7), 1431–1436 (2017)

    Article  Google Scholar 

  118. Chi, Y.M., Wang, Y.-T., Wang, Y., Maier, C., Jung, T.-P., Cauwenberghs, G.: Dry and noncontact EEG sensors for mobile brain-computer interfaces. IEEE Trans. Neural Syst. Rehabil. Eng. 20(2), 228–235 (2012)

    Article  Google Scholar 

  119. Liao, L.-D., et al.: Biosensor technologies for augmented brain-computer interfaces in the next decades. Proc. IEEE 100, 1553–1566 (2012). Special Centennial Issue

    Article  Google Scholar 

  120. Lopez-Gordo, M.A., Sanchez-Morillo, D., Valle, F.P.: Dry EEG electrodes. Sensors 14(7), 12847–12870 (2014)

    Article  Google Scholar 

  121. Borghini, G., Aricò, P., Di Flumeri, G., Sciaraffa, N., Babiloni, F.: Correlation and Similarity between cerebral and non-cerebral electrical activity for user’s states assessment. Sensors 19(3), 704 (2019)

    Article  Google Scholar 

  122. Jimenez-Molina, A., Retamal, C., Lira, H.: Using psychophysiological sensors to assess mental workload during web browsing. Sens. Switz. 18(2), 1–26 (2018)

    Google Scholar 

  123. Longo, L., Leva, M.C. (eds.): H-WORKLOAD 2017. CCIS, vol. 726. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61061-0

    Book  Google Scholar 

  124. Longo, L., Leva, M.C. (eds.): H-WORKLOAD 2018. CCIS, vol. 1012. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14273-5

    Book  Google Scholar 

  125. Leva, C., Wilkins, M., Coster, F.: Human performance modelling for adaptive automation (2018)

    Google Scholar 

  126. Dearing, D., Novstrup, A., Goan, T.: Assessing workload in human-machine teams from psychophysiological data with sparse ground truth. In: Longo, L., Leva, M.C. (eds.) H-WORKLOAD 2018. CCIS, vol. 1012, pp. 13–22. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14273-5_2

    Chapter  Google Scholar 

  127. Junior, A.C., Debruyne, C., Longo, L., O’Sullivan, D.: On the mental workload assessment of uplift mapping representations in linked data. In: Longo, L., Leva, M.C. (eds.) H-WORKLOAD 2018. CCIS, vol. 1012, pp. 160–179. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14273-5_10

    Chapter  Google Scholar 

  128. Comberti, L., Leva, M.C., Demichela, M., Desideri, S., Baldissone, G., Modaffari, F.: An empirical approach to workload and human capability assessment in a manufacturing plant. In: Longo, L., Leva, M.C. (eds.) H-WORKLOAD 2018. CCIS, vol. 1012, pp. 180–201. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14273-5_11

    Chapter  Google Scholar 

  129. Longo, L.: Experienced mental workload, perception of usability, their interaction and impact on task performance. PLoS ONE 13(8), e0199661 (2018)

    Article  Google Scholar 

  130. Byrne, A.: Mental workload as an outcome in medical education. In: Longo, L., Leva, M.C. (eds.) H-WORKLOAD 2017. CCIS, vol. 726, pp. 187–197. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61061-0_12

    Chapter  Google Scholar 

  131. Longo, L.: Designing medical interactive systems via assessment of human mental workload. In: 2015 IEEE 28th International Symposium on Computer-Based Medical Systems, pp. 364–365. IEEE, June 2015

    Google Scholar 

  132. Rizzo, L., Longo, L.: Representing and inferring mental workload via defeasible reasoning: a comparison with the NASA task load index and the workload profile. In: 1st Workshop on Advances in Argumentation in Artificial Intelligence, AI3@AI*IA, Bari, Italy, pp. 126–140 (2017)

    Google Scholar 

  133. Moustafa, K., Longo, L.: Analysing the impact of machine learning to model subjective mental workload: a case study in third-level education. In: Longo, L., Leva, M.C. (eds.) H-WORKLOAD 2018. CCIS, vol. 1012, pp. 92–111. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14273-5_6

    Chapter  Google Scholar 

  134. Rizzo, L., Longo, L.: Inferential models of mental Workload with defeasible argumentation and non-monotonic fuzzy reasoning: a comparative study. In: 2nd Workshop on Advances in Argumentation in Artificial Intelligence, Trento, Italy, pp. 11–26 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Babiloni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Babiloni, F. (2019). Mental Workload Monitoring: New Perspectives from Neuroscience. In: Longo, L., Leva, M. (eds) Human Mental Workload: Models and Applications. H-WORKLOAD 2019. Communications in Computer and Information Science, vol 1107. Springer, Cham. https://doi.org/10.1007/978-3-030-32423-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32423-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32422-3

  • Online ISBN: 978-3-030-32423-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics