Skip to main content

A Deep Learning Based Reasoner for Global Consistency in Named Entity Recognition

  • Conference paper
  • First Online:
Advances in Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD 2019)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1074))

  • 1298 Accesses

Abstract

Named Entity Recognition (NER) is a basic task of Natural Language Processing (NLP), it’s a challenging task in a variety of special applications. This paper aims to solve the global consistency of NER, and to improve the performance. Inspired by human reading process, we propose a NE-Reasoner model, which combine deep neural networks and memory artificial neural network to identify named entities with global consistency. The advantages of the model are: (1) The multi-layer deep architecture, allowing it to bootstrap the recognized entity set from coarse to fine. (2) The candidate pool memory mechanism, allowing it to exchange identified entity information between layers. (3) The reasoner, combing encoder-decoder and cached information to infer to get global entities. The experimental results show that the NE-Reasoner can identity ambiguous words and named entities that rarely or never met before.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P.: Natural language processing (almost) from scratch. J. Mach. Learn. Res. 12(Aug), 2493–2537 (2011)

    MATH  Google Scholar 

  2. Huang, Z., Xu, W., Yu, K.: Bidirectional LSTM-CRF models for sequence tagging. arXiv preprint arXiv:1508.01991 (2015)

  3. Ma, X., Hovy, E.: End-to-end sequence labeling via bi-directional LSTM-CNNs-CRF. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), vol. 1, pp. 1064–1074 (2016)

    Google Scholar 

  4. Chiu, J.P., Nichols, E.: Named entity recognition with bidirectional LSTM-CNNs. Trans. Assoc. Comput. Linguist. 4, 357–370 (2016)

    Article  Google Scholar 

  5. Lample, G., Ballesteros, M., Subramanian, S., Kawakami, K., Dyer, C.: Neural architectures for named entity recognition. In: Proceedings of NAACL-HLT, pp. 260–270 (2016)

    Google Scholar 

  6. Strubell, E., Verga, P., Belanger, D., McCallum, A.: Fast and accurate entity recognition with iterated dilated convolutions. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pp. 2670–2680 (2017)

    Google Scholar 

  7. Peters, M., Ammar, W., Bhagavatula, C., Power, R.: Semi-supervised sequence tagging with bidirectional language models. In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), vol. 1, pp. 1756–1765 (2017)

    Google Scholar 

  8. Liu, L., Shang, J., Xu, F.F., Ren, X., Gui, H., Peng, J., Han, J.: Empower sequence labeling with task-aware neural language model. In: International Conference on Artificial Intelligence (2018)

    Google Scholar 

  9. Zhang, Y., Yang, J.: Chinese NER using lattice LSTM. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1554–1564. Association for Computational Linguistics (2018). http://aclweb.org/anthology/P18-1144

  10. Nguyen, T.H., Sil, A., Dinu, G., Florian, R.: Toward mention detection robustness with recurrent neural networks. arXiv preprint arXiv:1602.07749 (2016)

  11. Graves, A., Wayne, G., Danihelka, I.: Neural turing machines. arXiv preprint arXiv:1410.5401 (2014)

  12. Sukhbaatar, S., Weston, J., Fergus, R., et al.: End-to-end memory networks. In: Advances in Neural Information Processing Systems, pp. 2440–2448 (2015)

    Google Scholar 

  13. Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–1543 (2014). http://www.aclweb.org/anthology/D14-1162

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruifang Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yin, X., Liu, R., Zheng, D., Lu, Z. (2020). A Deep Learning Based Reasoner for Global Consistency in Named Entity Recognition. In: Liu, Y., Wang, L., Zhao, L., Yu, Z. (eds) Advances in Natural Computation, Fuzzy Systems and Knowledge Discovery. ICNC-FSKD 2019. Advances in Intelligent Systems and Computing, vol 1074. Springer, Cham. https://doi.org/10.1007/978-3-030-32456-8_7

Download citation

Publish with us

Policies and ethics