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Abstract. We lay out a general method for computing branching dis-
tances between labeled transition systems. We translate the quantitative
games used for defining these distances to other, path-building games
which are amenable to methods from the theory of quantitative games.
We then show for all common types of branching distances how the
resulting path-building games can be solved. In the end, we achieve a
method which can be used to compute all branching distances in the
linear-time–branching-time spectrum.
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1 Introduction

During the last decade, formal verification has seen a trend towards modeling and
analyzing systems which contain quantitative information. This is motivated by
applications in real-time systems, hybrid systems, embedded systems and others.
Quantitative information can thus be a variety of things: probabilities, time, tank
pressure, energy intake, etc.

A number of quantitative models have hence been developed: probabilis-
tic automata [43], stochastic process algebras [36], timed automata [2], hy-
brid automata [1], timed variants of Petri nets [30,42], continuous-time Markov
chains [44], etc. Similarly, there is a number of specification formalisms for ex-
pressing quantitative properties: timed computation tree logic [35], probabilistic
computation tree logic [31], metric temporal logic [37], stochastic continuous
logic [3], etc.

Quantitative verification, i.e., the checking of quantitative properties for
quantitative systems, has also seen rapid development: for probabilistic systems
in PRISM [38] and PEPA [27], for real-time systems in Uppaal [40], RED [51],
TAPAAL [5] and Romeo [26], and for hybrid systems in HyTech [33], SpaceEx [25]
and HySAT [24], to name but a few.
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Fig. 1. Three timed automata modeling a train crossing.

Quantitative verification has, however, a problem of robustness. When the
answers to model checking problems are Boolean—either a system meets its
specification or it does not—then small perturbations in the system’s parameters
may invalidate the result. This means that, from a model checking point of view,
small, perhaps unimportant, deviations in quantities are indistinguishable from
larger ones which may be critical.

As an example, Fig. 1 shows three simple timed-automaton models of a train
crossing, each modeling that once the gates are closed, some time will pass before
the train arrives. Now assume that the specification of the system is

The gates have to be closed 60 seconds before the train arrives.

Model A does guarantee this property, hence satisfies the specification. Model
B only guarantees that the gates are closed 58 seconds before the train arrives,
and in model C, only one second may pass between the gates closing and the
train.

Neither of models B and C satisfies the specification, so this is the result
which a model checker like for example Uppaal would output. What this does not
tell us, however, is that model C is dangerously far away from the specification,
whereas model B only violates it slightly (and may be acceptable from a practical
point of view given other constraints on the system which we have not modeled
here).

In order to address the robustness problem, one approach is to replace the
Boolean yes-no answers of standard verification with distances. That is, the
Boolean co-domain of model checking is replaced by the non-negative real num-
bers. In this setting, the Boolean true corresponds to a distance of zero and
false to the non-zero numbers, so that quantitative model checking can now
tell us not only that a specification is violated, but also how much it is violated,
or how far the system is from corresponding to its specification.

In the example of Fig. 1, and depending on precisely how one wishes to
measure distances, the distance from A to our specification would be 0, whereas
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the distances from B and C to the specification may be 2 and 59, for example.
The precise interpretation of distance values will be application-dependent; but
in any case, it is clear that C is much farther away from the specification than
B is.

The distance-based approach to quantitative verification has been developed
in [8, 11, 28, 34, 46–48] and many other papers. Common to all these approaches
is that they introduce distances between systems, or between systems and spec-
ifications, and then employ these for approximate or quantitative verification.
However, depending on the application context, a plethora of different distances
are being used. Consequently, there is a need for a general theory of quantitative
verification which depends as little as possible on the concrete distances being
used.

Different applications foster different types of quantitative verification, but
it turns out that most of these essentially measure some type of distances be-
tween labeled transition systems. We have in [21] laid out a unifying framework
which allows one to reason about such distance-based quantitative verification
independently of the precise distance. This is essentially a general metric the-
ory of labeled transition systems, with infinite quantitative games as its main
theoretical ingredient and general fixed-point equations for linear and branching
distances as one of its main results.

The work in [21] generalizes the linear-time–branching-time spectrum of pre-
orders and equivalences from van Glabbeek’s [50] to a quantitative linear-time–
branching-time spectrum of distances, all parameterized on a given distance on
traces, or executions; cf. Fig. 2. This is done by generalizing Stirling’s bisim-
ulation game [45] along two directions, both to cover all other preorders and
equivalences in the linear-time–branching-time spectrum and into a game with
quantitative (instead of Boolean) objectives.

What is missing in [21] are actual algorithms for computing the different
types of distances. (The fixed-point equations mentioned above are generally
defined over infinite lattices, hence Tarski’s fixed-point theorem does not help
here.) In this paper, we take a different route to compute them. We translate
the general quantitative games used in [21] to other, path-building games. We
show that under mild conditions, this translation can always be effectuated, and
that for all common trace distances, the resulting path-building games can be
solved using various methods which we develop.

We start the paper by reviewing the quantitative games used to define lin-
ear and branching distances in [21] in Section 2. Then we show the reduction to
path-building games in Section 3 and apply this to show how to compute all com-
mon branching distances in Section 4. We collect our results in the concluding
section 5. The contributions of this paper are the following:

(1) A general method to reduce quantitative bisimulation-type games to path-
building games. The former can be posed as double path-building games,
where the players alternate to build two paths; we show how to transform
such games into a form where the players instead build one common path.
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∞-nested trace equivalence

(k + 1)-nested ready inclusion

(k + 1)-nested trace equivalence
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(k + 1)-nested trace inclusion

k-nested ready inclusion

k-nested trace equivalence

2-nested ready inclusion

2-nested trace equivalence
possible-futures

equivalence

1-nested ready
equivalence

ready equivalence

2-nested trace inclusion
possible-futures inclusion

1-nested ready inclusion
ready inclusion

1-nested trace equivalence
trace equivalence

1-nested trace inclusion
trace inclusion

∞-nested simulation equivalence
bisimulation

(k + 1)-ready sim. equivalence

(k + 1)-nested sim.
equivalence

k-nested ready sim. equivalence

(k + 1)-nested simulation

k-nested ready simulation

k-nested sim. equivalence

2-nested ready simulation

2-nested sim. equivalence

1-nested ready sim. equivalence
ready simulation equivalence

2-nested simulation

1-nested ready simulation
ready simulation

1-nested sim. equivalence
simulation equivalence

1-nested simulation
simulation

Fig. 2. The quantitative linear-time–branching-time spectrum from [21]. The nodes
are different system distances, and an edge d1 −→ d2 or d1 99K d2 indicates that
d1(s, t) ≥ d2(s, t) for all states s, t, and that d1 and d2 in general are topologically
inequivalent.
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(2) A collection of methods for solving different types of path-building games.
Standard methods are available for solving discounted games and mean-
payoff games; for other types we develop new methods.

(3) The application of the methods in (2) to compute various types of distances
between labeled transition systems defined by the games of (1).

2 Linear and Branching Distances

Let Σ be a set of labels. Σω denotes the set of infinite traces overΣ. We generally
count sequences from index 0, so that σ = (σ0, σ1, . . . ). Let R∗ = R≥0 ∪ {∞}
denote the extended non-negative real numbers.

2.1 Trace Distances

A trace distance is a hemimetric D : Σω × Σω → R∗, i.e., a function which
satisfies D(σ, σ) = 0 and D(σ, τ) +D(τ, υ) ≥ D(σ, υ) for all σ, τ, υ ∈ Σω.

The following is an exhaustive list of different trace distances which have been
used in different applications. We refer to [21] for more details and motivation.

The discrete trace distance: Ddisc(σ, τ) = 0 if σ = τ and ∞ otherwise. This is
equivalent to the standard Boolean setting: traces are either equal (distance 0)
or not (distance ∞).

The point-wise trace distance: Dsup(σ, τ) = supn≥0 d(σn, τn), for any given label
distance d : Σ×Σ → R∗. This measures the greatest individual symbol distance
in the traces and has been used for quantitative verification in, among others,
[9, 10, 12, 19, 39, 46].

The discounted trace distance: D+(σ, τ) =
∑∞

n=0 λ
nd(σn, τn), for any given dis-

counting factor λ ∈ [0, 1[. Sometimes also called accumulating trace distance,
this accumulates individual symbol distances along traces, using discounting
to adjust the values of distances further off. It has been used in, for example,
[6, 19, 39, 46].

The limit-average trace distance: Dlavg(σ, τ) = lim infn≥1
1
n

∑n−1
i=0 d(σi, τi). This

again accumulates individual symbol distances along traces and has been used in,
among others, [6,7]. Both discounted and limit-average distances are well-known
from the theory of discounted and mean-payoff games [16, 52].

The Cantor trace distance: DC(σ, τ) = 1
1+inf{n|σn 6=τn}

. This measures the (in-

verse of the) length of the common prefix of the traces and has been used for
verification in [14].

The maximum-lead trace distance: D±(σ, τ) = supn≥0

∣

∣

∑n

i=0(σi− τi)
∣

∣. Here it is
assumed that Σ admits arithmetic operations of + and −, for instance Σ ⊆ R.
As this measures differences of accumulated labels along runs, it is especially
useful for real-time systems, cf. [20, 34, 46].
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2.2 Labeled Transition Systems

A labeled transition system (LTS) over Σ is a tuple (S, i, T ) consisting of a set
of states S, with initial state i ∈ S, and a set of transitions T ⊆ S ×Σ × S. We
often write s

a−→ t to mean (s, a, t) ∈ T . We say that (S, i, T ) is finite if S and
T are finite. We assume our LTS to be non-blocking in the sense that for every
state s ∈ S there is a transition (s, a, t) ∈ T .

We have shown in [21] how any given trace distance D can be lifted to a
quantitative linear-time–branching-time spectrum of distances on LTS. This is
done via quantitative games as we shall review below. The point of [21] was
that if the given trace distance has a recursive formulation, which, as we show
in [21], every commonly used trace distance has, then the corresponding linear
and branching distances can be formulated as fixed points for certain monotone
functionals.

The fixed-point formulation of [21] does not, however, give rise to actual
algorithms for computing linear and branching distances, as it happens more
often than not that the mentioned monotone functionals are defined over infinite
lattices. Concretely, this is the case for all but the point-wise trace distances in
Section 2.1. Hence other methods are required for computing them; developing
these is the purpose of this paper.

2.3 Quantitative Ehrenfeucht-Fraïssé Games

We review the quantitative games used in [21] to define different types of linear
and branching distances for any given trace distance D. For conciseness, we only
introduce simulation games and bisimulation games here, but similar definitions
may be given for all equivalences and preorders in the linear-time–branching-
time spectrum [50].

Quantitative Simulation Games Let S = (S, i, T ) and S ′ = (S′, i′, T ′) be
LTS and D : Σω × Σω → R∗ a trace distance. The simulation game from S
to S ′ is played by two players, the maximizer and the minimizer. A play begins
with the maximizer choosing a transition (s0, a0, s1) ∈ T with s0 = i. Then the
minimizer chooses a transition (s′0, a

′
0, s

′
1) ∈ T ′ with s′0 = i′. Now the maximizer

chooses a transition (s1, a1, s2) ∈ T , then the minimizer chooses a transition
(s′1, a

′
1, s

′
2) ∈ T ′, and so on indefinitely. Hence this is what should be called a

double path-building game: the players each build, independently, an infinite path
in their respective LTS.

A play hence consists of two infinite paths, π starting from i, and π′ starting
from i′. The utility of this play is the distance D(σ, σ′) between the traces σ, σ′ of
the paths π and π′, which the maximizer wants to maximize and the minimizer
wants to minimize. The value of the game is, then, the utility of the play which
results when both maximizer and minimizer are playing optimally.

To formalize the above intuition, we define a configuration for the maximizer
to be a pair (π, π′) of finite paths of equal length, π in S and starting in i, π′ in
S ′ starting in i′. The intuition is that this covers the history of a play; the choices
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both players have made up to a certain point in the game. Hence a configuration
for the minimizer is a similar pair (π, π′) of finite paths, but now π is one step
longer than π′.

A strategy for the maximizer is a mapping from maximizer configurations
to transitions in S, fixing the maximizer’s choice of a move in the given con-
figuration. Denoting the set of maximizer configurations by Conf, such a strat-
egy is hence a mapping θ : Conf → T such that for all (π, π′) ∈ Conf with
θ(π, π′) = (s, a, t), we have end(π) = s. Here end(π) denotes the last state of π.
Similarly, and denoting the set of minimizer configurations by Conf

′, a strategy
for the minimizer is a mapping θ′ : Conf

′ → T ′ such that for all (π, π′) ∈ Conf
′

with θ′(π, π′) = (s′, a′, t′), end(π′) = s′.
Denoting the sets of these strategies by Θ and Θ′, respectively, we can now

define the simulation distance from S to S ′ induced by the trace distance D,
denoted Dsim(S,S ′), by

Dsim(S,S ′) = sup
θ∈Θ

inf
θ′∈Θ′

D(σ(θ, θ′), σ′(θ, θ′)) ,

where σ(θ, θ′) and σ′(θ, θ′) are the traces of the paths π(θ, θ′) and π′(θ, θ′) in-
duced by the pair of strategies (θ, θ′).

Remark 1. If the trace distance D is discrete, i.e., D = Ddisc as in Section 2.1,
then the quantitative game described above reduces to the well-known simulation

game [45]: The only choice the minimizer has for minimizing the value of the
game is to always choose a transition with the same label as the one just chosen
by the maximizer; similarly, the maximizer needs to try to force the game into
states where she can choose a transition which the minimizer cannot match.
Hence the value of the game will be 0 if the minimizer always can match the
maximizer’s labels, that is, iff S is simulated by S ′.

Quantitative Bisimulation Games There is a similar game for computing
the bisimulation distance between LTS S and S ′. Here we give the maximizer
the choice, at each step, to either choose a transition from sk as before, or to
“switch sides” and choose a transition from s′k instead; the minimizer then has
to answer with a transition on the other side.

Hence the players are still building two paths, one in each LTS, but now
they are both contributing to both paths. The utility of such a play is still the
distance between these two paths, which the maximizer wants to maximize and
the minimizer wants to minimize. The bisimulation distance between S and
S ′, denoted Dbisim(S,S ′), is then defined to be the value of this quantitative
bisimulation game.

Remark 2. If the trace distance D = Ddisc is discrete, then using the same argu-
ments as in Remark 1, we see that Dbisim

disc (S,S ′) = 0 iff S and S ′ are bisimilar.
The game which results being played is precisely the bisimulation game of [45],
which also has been introduced by Fraïssé [23] and Ehrenfeucht [15] in other
contexts.
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The Quantitative Linear-Time–Branching-Time Spectrum The above-
defined quantitative simulation and bisimulation games can be generalized using
different methods. One is to introduce a switch counter sc into the game which
counts how often the maximizer has switched sides during an ongoing game.
Then one can limit the maximizer’s capabilities by imposing limits on sc: if the
limit is sc = 0, then the players are playing a simulation game; if there is no
limit (sc ≤ ∞), they are playing a bisimulation game. Other limits sc ≤ k, for
k ∈ N, can be used to define k-nested simulation distances, generalizing the
equivalences and preorders from [29,32].

Another method of generalization is to introduce ready moves into the game.
These consist of the maximizer challenging her opponent by switching sides,
but only requiring that the minimizer match the chosen transition; afterwards
the game finishes. This can be employed to introduce the ready simulation dis-

tance of [41] and, combined with the switch counter method above, the ready

k-nested simulation distance. We refer to [21] for further details on these and
other variants of quantitative (bi)simulation games.

For reasons of exposition, we will below introduce our reduction to path-
building games only for the quantitative simulation and bisimulation games; but
all our work can easily be transferred to the general setting of [21].

3 Reduction

In order to compute simulation and bisimulation distances, we translate the
games of the previous section to path-building games à la Ehrenfeucht-Mycielski
[16]. Let D : Σω × Σω → R∗ be a trace distance, and assume that there are
functions valD : Rω

∗ → R∗ and fD : Σ × Σ → R∗ for which it holds, for all
σ, τ ∈ Σ∞, that

D(σ, τ) = valD(0, fD(σ0, τ0), 0, fD(σ1, τ1), 0, . . . ) . (1)

We will need these functions in our translation, and we show in Section 3.2 below
that they exist for all common trace distances.

3.1 Simulation Distance

Let S = (S, i, T ) and S ′ = (S′, i′, T ′) be LTS. We construct a turn-based game
U = U(S,S ′) = (U, u0,−_) as follows, with U = U1 ∪ U2:

U1 = S × S′ U2 = S × S′ ×Σ u0 = (i, i′)

−_ = {(s, s′) 0−_ (t, s′, a) | (s, a, t) ∈ T }

∪ {(t, s′, a)
fD(a,a′)
−−−−−−_ (t, t′) | (s′, a′, t′) ∈ T ′}

This is a two-player game. We again call the players maximizer and minimizer,
with the maximizer controlling the states in U1 and the minimizer the ones in
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U2. Transitions are labeled with extended real numbers, but as the image of fD
in R∗ is finite, the set of transition labels in U is finite.

The game on U is played as follows. A play begins with the maximizer choos-
ing a transition (u0, a0, u1) ∈ −_ with u0 = i. Then the minimizer chooses a tran-
sition (u1, a1, u2) ∈ −_. Then the maximizer chooses a transition (u2, a2, u3) ∈ −_,
and so on indefinitely (note that U is non-blocking). A play thus induces an in-
finite path π = (u0, a0, u1), (u1, a1, u2), . . . in U with u0 = i. The goal of the
maximizer is to maximize the value valD(U) := valD(a0, a1, . . . ) of the trace of
π; the goal of the minimizer is to minimize this value.

This is hence a path-building game, variations of which (for different val-
uation functions) have been studied widely in both economics and computer
science since Ehrenfeucht-Mycielski’s [16]. Formally, configurations and strate-
gies are given as follows. A configuration of the maximizer is a path π1 in U
with end(π1) ∈ U1, and a configuration of the minimizer is a path π2 in U with
end(π2) ∈ U2. Denote the sets of these configurations by Conf1 and Conf2, re-
spectively. A strategy for the maximizer is, then, a mapping θ1 : Conf1 → −_
such that for all π1 ∈ Conf1 with θ1(π1) = (u, x, v), end(π1) = u. A strategy for
the minimizer is a mapping θ2 : Conf2 → −_ such that for all π2 ∈ Conf2 with
θ2(π2) = (u, x, v), end(π2) = u. Denoting the sets of these strategies by Θ1 and
Θ2, respectively, we can now define

valD(U) = sup
θ1∈Θ1

inf
θ2∈Θ2

valD(σ(θ1, θ2)) ,

where σ(θ1, θ2) is the trace of the path π(θ1, θ2) induced by the pair of strategies
(θ1, θ2).

By the next theorem, the value of U is precisely the simulation distance from
S to S ′.

Theorem 3. For all LTS S, S ′, Dsim(S,S ′) = valD(U(S,S ′)).

Proof. Write S = (S, i, T ) and S ′ = (S′, i′, T ′). Informally, the reason for the
equality is that any move (s, a, t) ∈ T of the maximizer in the simulation distance

game can be copied to a move (s, s′)
0−_ (t, s′, a), regardless of s′, in U . Similarly,

any move (s′, a′, t′) of the minimizer can be copied to a move (t, s′, a)
fD(a,a′)
−−−−−−_

(t, t′), and all the moves in U are of this form.
To turn this idea into a formal proof, we show that there are bijections

between configurations and strategies in the two games, and that under these
bijections, the utilities of the two games are equal. For (π, π′) ∈ Conf in the
simulation distance game, with π = (s0, a0, s1), . . . , (sn−1, an−1, sn) and π′ =
(s′0, a

′
0, s

′
1), . . . , (s

′
n−1, a

′
n−1, s

′
n), define

φ1(π, π
′) = ((s0, s

′
0), 0, (s1, s

′
0, a0)), ((s1, s

′
0, a0), fD(a0, a

′
0), (s1, s

′
1)), . . . ,

((sn, s
′
n−1, an−1), fD(an−1, a

′
n−1), (sn, s

′
n)) .

It is clear that this defines a bijection φ1 : Conf → Conf1, and that one can
similarly define a bijection φ2 : Conf

′ → Conf2.
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Now for every strategy θ : Conf → T in the simulation distance game, define
a strategy ψ1(θ) = θ1 ∈ Θ1 as follows. For π1 ∈ Conf1, let (π, π′) = φ−1

1 (π1)
and s′ = end(π′). Let θ(π, π′) = (s, a, t) and define θ1(π1) = ((s, s′), 0, (t, s′, a)).
Similarly we define a mapping ψ2 : Θ′ → Θ2 as follows. For θ′ : Conf

′ → T ′ and
π2 ∈ Conf2, let (π, π′) = φ−1

2 (π2) with π = (s0, a0, s1), . . . , (sn, an, sn+1). Let
θ′(π, π′) = (s′, a′, t′) and define ψ2(θ

′)(π2) = ((sn+1, s
′, an), fD(an, a

′), (sn+1, t
′)).

It is clear that ψ1 and ψ2 indeed map strategies in the simulation distance
game to strategies in U and that both are bijections. Also, for each pair (θ, θ′) ∈
Θ ×Θ′, D(σ(θ, θ′), σ′(θ, θ′)) = valD(σ(ψ1(θ), ψ2(θ

′))) by construction. But then

Dsim(S,S ′) = sup
θ∈Θ

inf
θ′∈Θ′

D(σ(θ, θ′), σ′(θ, θ′))

= sup
θ∈Θ

inf
θ′∈Θ′

valD(σ(ψ1(θ), ψ2(θ
′)))

= sup
θ1∈Θ1

inf
θ2∈Θ2

valD(σ(θ1, θ2)) = valD(U) ,

the third equality because ψ1 and ψ2 are bijections. ⊓⊔

3.2 Examples

We show that the reduction applies to all trace distances from Section 2.1.

1. For the discrete trace distance D = Ddisc, we let

valD(x) =

∞
∑

n=0

xn , fD(a, b) =

{

0 if a = b ,

∞ otherwise ,

then (1) holds. In the game on U , the minimizer needs to play 0-labeled
transitions to keep the distance at 0.

2. For the point-wise trace distance D = Dsup, we can let

valD(x) = sup
n≥0

xn , fD(a, b) = d(a, b) .

Hence the game on U computes the sup of a trace.
3. For the discounted trace distance D = D+, let

valD(x) =

∞
∑

n=0

√
λ
n
xn , fD(a, b) =

√
λd(a, b) ,

then (1) holds. Hence the game on U is a standard discounted game [52].
4. For the limit-average trace distance D = Dlavg, we can let

valD(x) = lim inf
n≥1

1

n

n−1
∑

i=0

xi , fD(a, b) = 2d(a, b) ;

we will show below that (1) holds. Hence the game on U is a mean-payoff
game [52].
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5. For the Cantor trace distance D = DC, let

valD(x) =
2

1 + inf{n | xn 6= 0} , fD(a, b) =

{

0 if a = b ,

1 otherwise .

The objective of the maximizer in this game is to reach a transition with
weight 1 as soon as possible.

6. For the maximum-lead trace distance D = D±, we can let

valD(x) = sup
n≥0

∣

∣

n
∑

i=0

xi
∣

∣ , fD(a, b) = a− b ,

then (1) holds.

3.3 Bisimulation Distance

We can construct a similar turn-based game to compute the bisimulation dis-
tance. Let S = (S, i, T ) and S ′ = (S′, i′, T ′) be LTS and define V = V(S,S ′) =
(V, v0,−_) as follows, with V = V1 ∪ V2:

V1 = S × S′ V2 = S × S′ ×Σ × {1, 2} v0 = (i, i′)

−_ = {(s, s′) 0−_ (t, s′, a, 1) | (s, a, t) ∈ T }
∪ {(s, s′) 0−_ (s, t′, a′, 2) | (s′, a′, t′) ∈ T ′}

∪ {(t, s′, a, 1)
fD(a,a′)
−−−−−−_ (t, t′) | (s′, a′, t′) ∈ T ′}

∪ {(s, t′, a′, 2)
fD(a,a′)
−−−−−−_ (t, t′) | (s, a, t) ∈ T }

Here we have used the minimizer’s states to both remember the label choice of
the maximizer and which side of the bisimulation game she plays on. By suitable
modifications, we can construct similar games for all distances in the spectrum
of [21]. The next theorem states that the value of V is precisely the bisimulation
distance between S and S ′.

Theorem 4. For all LTS S, S ′, Dbisim(S,S ′) = valD(V(S,S ′)).

Proof. This proof is similar to the one of Theorem 3, only that now, we have
to take into account that the maximizer may “switch sides”. The intuition is
that maximizer moves (s, a, t) in the S component of the bisimulation distance

games are emulated by moves (s, s′)
0−_ (t, s′, a, 1), maximizer moves (s′, a′, t′)

in the S ′ component are emulated by moves (s, s′)
0−_ (s, t′, a′, 2), and similarly

for the minimizer. The values 1 and 2 in the last component of the V2 states
ensure that the minimizer only has moves available which correspond to playing
in the correct component in the bisimulation distance game (i.e., that ψ2 is a
bijection). ⊓⊔
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4 Computing the Values of Path-Building Games

We show here how to compute the values of the different path-building games
which we saw in the last section. This will give us algorithms to compute all
simulation and bisimulation distances associated with the trace distances of Sec-
tion 2.1.

We will generally only refer to the games U for computing simulation distance
here, but the bisimulation distance games V are very similar, and everything we
say also applies to them.

Discrete distance: The game to compute the discrete simulation distances is a
reachability game, in that the goal of the maximizer is to force the minimizer
into a state from which she can only choose ∞-labeled transitions. We can hence
solve them using the standard controllable-predecessor operator defined, for any
set S ⊆ U1 of maximizer states, by

cpre(S) = {u1 ∈ U1 | ∃u1
0−_ u2 : ∀u2

x−_ u3 : u3 ∈ S} .

Now let S ⊆ U1 be the set of states from which the maximizer can force the
game into a state from which the minimizer only has ∞-labeled transitions, i.e.,

S = {u1 ∈ U1 | ∃u1
0−_ u2 : ∀u2

x−_ u3 : x = ∞} ,

and compute S∗ = cpre∗(S) =
⋃

n≥0 cpren(S). By monotonicity of cpre and as
the subset lattice of U1 is complete and finite, this computation finishes in at
most |U1| steps.

Lemma 5. valD(U) = 0 iff u0 /∈ S∗.

Proof. As we are working with the discrete distance, we have either valD(U) =
0 or valD(U) = ∞. Now uo ∈ S∗ iff the maximizer can force, using finitely
many steps, the game into a state from which the minimizer only has ∞-labeled
transitions, which is the same as valD(U) = ∞. ⊓⊔

Point-wise distance: To compute the value of the point-wise simulation distance
game, let W = {w1, . . . , wm} be the (finite) set of weights of the minimizer’s
transitions, ordered such that w1 < · · · < wm. For each i = 1, . . . ,m, let Si =

{u1 ∈ U1 : ∃u1
0−_ u2 : ∀u2

x−_ u3 : x ≥ wi} be the set of maximizer states from
which the maximizer can force the minimizer into a transition with weight at
least wi; note that Sm ⊆ Sm−1 ⊆ · · · ⊆ S1 = U1. For each i = 1, . . . ,m, compute
S∗
i = cpre∗(Si), then S∗

m ⊆ S∗
m−1 ⊆ · · · ⊆ S∗

1 = U1.

Lemma 6. Let p be the greatest index for which u0 ∈ S∗
p , then p = valD(U).

Proof. For any k, we have u0 ∈ S∗
k iff the maximizer can force, using finitely many

steps, the game into a state from which the minimizer only has transitions with
weight at least wk. Thus u0 ∈ S∗

p iff (1) the maximizer can force the minimizer
into a wp-weighted transition; (2) the maximizer cannot force the minimizer into
a wp+1-weighted transition. ⊓⊔
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Discounted distance: The game to compute the discounted simulation distance
is a standard discounted game and can be solved by standard methods [52].

Limit-average distance: For the limit-average simulation distance game, let (yn)n≥1

be the sequence (1, 1, 32 , 1,
5
4 , . . . ) and note that limn→∞ yn = 1. Then

valD(x) = valD(x) lim
n→∞

yn = lim inf
n≥1

yn
n

n−1
∑

i=0

xi

= lim inf
2k≥1

1

2k

k−1
∑

i=0

fD(σi, τi)

= lim inf
k≥1

1

k

k−1
∑

i=0

d(σi, τi) = Dlavg(σ, τ) ,

so, indeed, (1) holds. The game is a standard mean-payoff game and can be
solved by standard methods, see for example [13].

Cantor distance: To compute the value of the Cantor simulation distance game,
let S1 ⊆ U1 be the set of states from which the maximizer can force the game
into a state from which the minimizer only has 1-labeled transitions, i.e., S1 =

{u1 ∈ U1 | ∃u1 0−→ u2 : ∀u2 x−→ u3 : x = 1}. Now recursively compute Si+1 =
Si ∪ cpre(Si), for i = 1, 2, . . . , until Si+1 = Si (which, as Si ⊆ Si+1 for all i and
U1 is finite, will happen eventually). Then Si is the set of states from which the
maximizer can force the game to a 1-labeled minimizer transition which is at
most 2i steps away. Hence valD(U) = 0 if there is no p for which u0 ∈ Sp, and
otherwise valD(U) = 1

p
, where p is the least index for which u0 ∈ Sp.

Maximum-lead distance: For the maximum-lead simulation distance game, we
note that the maximizer wants to maximize supn≥0

∣

∣

∑n

i=0 xi
∣

∣, i.e., wants the
accumulated values

∑n

i=0 xi or −∑n

i=0 xi to exceed any prescribed bounds. A
weighted game in which one player wants to keep accumulated values inside
some given bounds, while the opponent wants to exceed these bounds, is called
an interval-bound energy game. It is shown in [4] that solving general interval-
bound energy games is EXPTIME-complete.

We can reduce the problem of computing maximum-lead simulation distance
to an interval-bound energy game by first non-deterministically choosing a bound
k and then checking whether player 1 wins the interval-bound energy game on
U for bounds [−k, k]. (There is a slight problem in that in [4], energy games
are defined only for integer -weighted transition systems, whereas we are dealing
with real weights here. However, it is easily seen that the results of [4] also apply
to rational weights and bounds; and as our transition systems are finite, one can
always find a sound and complete rational approximation.)

We can thus compute maximum-lead simulation distance in non-deterministic
exponential time; we leave open for now the question whether there is a more
efficient algorithm.
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5 Conclusion and Future Work

We sum up our results in the following corollary which gives the complexities of
the decision problems associated with the respective distance computations. Note
that the first part restates the well-known fact that simulation and bisimulation
are decidable in polynomial time.

Corollary 7.

1. Discrete simulation and bisimulation distances are computable in PTIME.

2. Point-wise simulation and bisimulation distances are computable in PTIME.

3. Discounted simulation and bisimulation distances are computable in NP ∩
coNP.

4. Limit-average simulation and bisimulation distances are computable in NP∩
coNP.

5. Cantor simulation and bisimulation distances are computable in PTIME.

6. Maximum-lead simulation and bisimulation distances are computable in

NEXPTIME.

In the future, we intend to expand our work to also cover quantitative speci-

fication theories. Together with several coauthors, we have in [17, 18] developed
a comprehensive setting for satisfaction and refinement distances in quantita-
tive specification theories. Using our work in [22] on a qualitative linear-time–
branching-time spectrum of specification theories, we plan to introduce a quan-
titative linear-time–branching-time spectrum of specification distances and to
use the setting developed here to devise methods for computing them through
path-building games.

Another possible extension of our work contains probabilistic systems, for
example the probabilistic automata of [43]. A possible starting point for this
is [49] which uses simple stochastic games to compute probabilistic bisimilarity.
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