Skip to main content

Computing Branching Distances Using Quantitative Games

  • Conference paper
  • First Online:
Theoretical Aspects of Computing – ICTAC 2019 (ICTAC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11884))

Included in the following conference series:

Abstract

We lay out a general method for computing branching distances between labeled transition systems. We translate the quantitative games used for defining these distances to other, path-building games which are amenable to methods from the theory of quantitative games. We then show for all common types of branching distances how the resulting path-building games can be solved. In the end, we achieve a method which can be used to compute all branching distances in the linear-time–branching-time spectrum.

U. Fahrenberg—This author’s work is supported by the Chaire ISC: Engineering Complex Systems – École polytechnique – Thales – FX – DGA – Dassault Aviation – DCNS Research – ENSTA ParisTech – Télécom ParisTech.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alur, R., et al.: The algorithmic analysis of hybrid systems. Theor. Comput. Sci. 138(1), 3–34 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2), 183–235 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aziz, A., Sanwal, K., Singhal, V., Brayton, R.K.: Model-checking continous-time Markov chains. ACM Trans. Comput. Log. 1(1), 162–170 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bouyer, P., Fahrenberg, U., Larsen, K.G., Markey, N., Srba, J.: Infinite runs in weighted timed automata with energy constraints. In: Cassez, F., Jard, C. (eds.) FORMATS 2008. LNCS, vol. 5215, pp. 33–47. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85778-5_4

    Chapter  MATH  Google Scholar 

  5. Byg, J., Jørgensen, K.Y., Srba, J.: TAPAAL: editor, simulator and verifier of timed-arc Petri nets. In: Liu, Z., Ravn, A.P. (eds.) ATVA 2009. LNCS, vol. 5799, pp. 84–89. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04761-9_7

    Chapter  Google Scholar 

  6. Černý, P., Henzinger, T.A., Radhakrishna, A.: Simulation distances. Theor. Comput. Sci. 413(1), 21–35 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chatterjee, K., Doyen, L., Henzinger, T.A.: Quantitative languages. ACM Trans. Comput. Log. 11(4), 23:1–23:38 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. de Alfaro, L., Faella, M., Henzinger, T.A., Majumdar, R., Stoelinga, M.: Model checking discounted temporal properties. Theor. Comput. Sci. 345(1), 139–170 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. de Alfaro, L., Faella, M., Stoelinga, M.: Linear and branching system metrics. IEEE Trans. Software Eng. 35(2), 258–273 (2009)

    Article  MATH  Google Scholar 

  10. de Alfaro, L., Henzinger, T.A., Majumdar, R.: Discounting the future in systems theory. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 1022–1037. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45061-0_79

    Chapter  Google Scholar 

  11. Desharnais, J., Gupta, V., Jagadeesan, R., Panangaden, P.: Metrics for labelled Markov processes. Theor. Comput. Sci. 318(3), 323–354 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Desharnais, J., Laviolette, F., Tracol, M.: Approximate analysis of probabilistic processes. In: QEST, pp. 264–273. IEEE Computer Society (2008)

    Google Scholar 

  13. Dhingra, V., Gaubert, S.: How to solve large scale deterministic games with mean payoff by policy iteration. In: Lenzini, L., Cruz, R.L. (eds.) VALUETOOLS. ACM International Conference Proceedings, vol. 180, p. 12. ACM (2006)

    Google Scholar 

  14. Doyen, L., Henzinger, T.A., Legay, A., Ničković, D.: Robustness of sequential circuits. In: Gomes, L., Khomenko, V., Fernandes, J.M. (eds.) ACSD, pp. 77–84. IEEE Computer Society, Washington, D.C. (2010)

    Google Scholar 

  15. Ehrenfeucht, A.: An application of games to the completeness problem for formalized theories. Fund. Math. 49, 129–141 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ehrenfeucht, A., Mycielski, J.: Positional strategies for mean payoff games. Int. J. Game Theory 8, 109–113 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fahrenberg, U., Křetínský, J., Legay, A., Traonouez, L.-M.: Compositionality for quantitative specifications. In: Lanese, I., Madelaine, E. (eds.) FACS 2014. LNCS, vol. 8997, pp. 306–324. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15317-9_19

    Chapter  Google Scholar 

  18. Fahrenberg, U., Křetínský, J., Legay, A., Traonouez, L.-M.: Compositionality for quantitative specifications. Soft. Comput. 22(4), 1139–1158 (2018)

    Article  MATH  Google Scholar 

  19. Fahrenberg, U., Larsen, K.G., Thrane, C.: A quantitative characterization of weighted Kripke structures in temporal logic. Comput. Inform. 29(6+), 1311–1324 (2010)

    MathSciNet  MATH  Google Scholar 

  20. Fahrenberg, U., Legay, A.: A robust specification theory for modal event-clock automata. In: Bauer, S.S., Raclet, J.-B. (eds.) Proceedings Fourth Workshop on Foundations of Interface Technologies, FIT 2012. EPTCS, Tallinn, Estonia, 25 March 2012, vol. 87, pp. 5–16 (2012)

    Article  Google Scholar 

  21. Fahrenberg, U., Legay, A.: The quantitative linear-time-branching-time spectrum. Theor. Comput. Sci. 538, 54–69 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Fahrenberg, U., Legay, A.: A linear-time–branching-time spectrum of behavioral specification theories. In: Steffen, B., Baier, C., van den Brand, M., Eder, J., Hinchey, M., Margaria, T. (eds.) SOFSEM 2017. LNCS, vol. 10139, pp. 49–61. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-51963-0_5

    Chapter  MATH  Google Scholar 

  23. Fraïssé, R.: Sur quelques classifications des systèmes de relations. Publ. Scient. de l’Univ. d’Alger Série A 1, 35–182 (1954)

    Google Scholar 

  24. Fränzle, M., Herde, C.: HySAT: an efficient proof engine for bounded model checking of hybrid systems. Formal Meth. Syst. Design 30(3), 179–198 (2007)

    Article  MATH  Google Scholar 

  25. Frehse, G., et al.: SpaceEx: scalable verification of hybrid systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1_30

    Chapter  Google Scholar 

  26. Gardey, G., Lime, D., Magnin, M., Roux, O.H.: Romeo: a tool for analyzing time Petri nets. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 418–423. Springer, Heidelberg (2005). https://doi.org/10.1007/11513988_41

    Chapter  Google Scholar 

  27. Gilmore, S., Hillston, J.: The PEPA workbench: a tool to support a process algebra-based approach to performance modelling. In: Haring, G., Kotsis, G. (eds.) TOOLS 1994. LNCS, vol. 794, pp. 353–368. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-58021-2_20

    Chapter  Google Scholar 

  28. Girard, A., Pappas, G.J.: Approximation metrics for discrete and continuous systems. IEEE Trans. Automat. Contr. 52(5), 782–798 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. Groote, J.F., Vaandrager, F.W.: Structured operational semantics and bisimulation as a congruence. Inf. Comput. 100(2), 202–260 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  30. Hanisch, H.-M.: Analysis of place/transition nets with timed arcs and its application to batch process control. In: Ajmone Marsan, M. (ed.) ICATPN 1993. LNCS, vol. 691, pp. 282–299. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-56863-8_52

    Chapter  Google Scholar 

  31. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal Aspects Comput. 6(5), 512–535 (1994)

    Article  MATH  Google Scholar 

  32. Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concurrency. J. ACM 32(1), 137–161 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  33. Henzinger, T.A., Ho, P.-H., Wong-Toi, H.: HYTECH: a model checker for hybrid systems. Int. J. Softw. Tools Techn. Trans. 1(1–2), 110–122 (1997)

    Article  MATH  Google Scholar 

  34. Henzinger, T.A., Majumdar, R., Prabhu, V.S.: Quantifying similarities between timed systems. In: Pettersson, P., Yi, W. (eds.) FORMATS 2005. LNCS, vol. 3829, pp. 226–241. Springer, Heidelberg (2005). https://doi.org/10.1007/11603009_18

    Chapter  MATH  Google Scholar 

  35. Henzinger, T.A., Nicollin, X., Sifakis, J., Yovine, S.: Symbolic model checking for real-time systems. Inf. Comput. 111(2), 193–244 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  36. Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge University Press, Cambridge (1996)

    Book  MATH  Google Scholar 

  37. Koymans, R.: Specifying real-time properties with metric temporal logic. Real-Time Syst. 2(4), 255–299 (1990)

    Article  Google Scholar 

  38. Kwiatkowska, M., Norman, G., Parker, D.: Probabilistic symbolic model checking with PRISM: a hybrid approach. In: Katoen, J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 52–66. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46002-0_5

    Chapter  Google Scholar 

  39. Larsen, K.G., Fahrenberg, U., Thrane, C.: Metrics for weighted transition systems: axiomatization and complexity. Theor. Comput. Sci. 412(28), 3358–3369 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  40. Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. Int. J. Softw. Tools Techn. Trans. 1(1–2), 134–152 (1997)

    Article  MATH  Google Scholar 

  41. Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. In: POPL, pp. 344–352. ACM Press (1989)

    Google Scholar 

  42. Merlin, P.M., Farber, D.J.: Recoverability of communication protocols-implications of a theoretical study. IEEE Trans. Commun. 24(9), 1036–1043 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  43. Segala, R., Lynch, N.: Probabilistic simulations for probabilistic processes. In: Jonsson, B., Parrow, J. (eds.) CONCUR 1994. LNCS, vol. 836, pp. 481–496. Springer, Heidelberg (1994). https://doi.org/10.1007/978-3-540-48654-1_35

    Chapter  Google Scholar 

  44. Stewart, W.J.: Introduction to the Numerical Solution of Markov Chains. Princeton University Press, Princeton (1994)

    MATH  Google Scholar 

  45. Stirling, C.: Modal and temporal logics for processes. In: Moller, F., Birtwistle, G. (eds.) Logics for Concurrency. LNCS, vol. 1043, pp. 149–237. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-60915-6_5

    Chapter  Google Scholar 

  46. Thrane, C., Fahrenberg, U., Larsen, K.G.: Quantitative analysis of weighted transition systems. J. Log. Alg. Prog. 79(7), 689–703 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  47. van Breugel, F.: An introduction to metric semantics: operational and denotational models for programming and specification languages. Theor. Comput. Sci. 258(1–2), 1–98 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  48. van Breugel, F., Worrell, J.: A behavioural pseudometric for probabilistic transition systems. Theor. Comput. Sci. 331(1), 115–142 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  49. van Breugel, F., Worrell, J.: The complexity of computing a bisimilarity pseudometric on probabilistic automata. In: van Breugel, F., Kashefi, E., Palamidessi, C., Rutten, J. (eds.) Horizons of the Mind. A Tribute to Prakash Panangaden. LNCS, vol. 8464, pp. 191–213. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06880-0_10

    Chapter  MATH  Google Scholar 

  50. van Glabbeek, R.J.: The linear time - branching time spectrum I. In: Bergstra, J.A., Ponse, A., Smolka, S.A. (eds.) Handbook of Process Algebra, pp. 3–99. Elsevier, Amsterdam (2001)

    Chapter  MATH  Google Scholar 

  51. Wang, F., Mok, A., Emerson, E.A.: Symbolic model checking for distributed real-time systems. In: Woodcock, J.C.P., Larsen, P.G. (eds.) FME 1993. LNCS, vol. 670, pp. 632–651. Springer, Heidelberg (1993). https://doi.org/10.1007/BFb0024671

    Chapter  Google Scholar 

  52. Zwick, U., Paterson, M.: The complexity of mean payoff games on graphs. Theor. Comput. Sci. 158(1&2), 343–359 (1996)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uli Fahrenberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fahrenberg, U., Legay, A., Quaas, K. (2019). Computing Branching Distances Using Quantitative Games. In: Hierons, R., Mosbah, M. (eds) Theoretical Aspects of Computing – ICTAC 2019. ICTAC 2019. Lecture Notes in Computer Science(), vol 11884. Springer, Cham. https://doi.org/10.1007/978-3-030-32505-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32505-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32504-6

  • Online ISBN: 978-3-030-32505-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics