Skip to main content

Optimal Run Problem for Weighted Register Automata

  • Conference paper
  • First Online:
Theoretical Aspects of Computing – ICTAC 2019 (ICTAC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11884))

Included in the following conference series:

  • 366 Accesses

Abstract

Register automata (RA) are a computational model that can handle data values by adding registers to finite automata. Recently, weighted register automata (WRA) were proposed by extending RA so that weights can be specified for transitions. In this paper, we first investigate decidability and complexity of decision problems on the weights of runs in WRA. We then propose an algorithm for the optimum run problem related to the above decision problems. For this purpose, we use a register type as an abstraction of the contents of registers, which is determined by binary relations (such as \(=\), <, etc.) handled by WRA. Also, we introduce a subclass where both the applicability of transition rules and the weights of transitions are determined only by a register type. We present a method of transforming a given WRA satisfying the assumption to a weighted directed graph such that the optimal run of WRA and the minimum weight path of the graph correspond to each other. Lastly, we discuss the optimal run problem for weighted timed automata as an example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We do not include the size of the weight part because of the assumption that the computation of the weights of a single transition and a single register can be done in constant time.

  2. 2.

    If there is no such a switch \((p,\theta ) \vdash _{t^\prime ,d} (q,\theta [\varLambda \leftarrow d])\) for any \(d\in D\), we define the infimum as \(\infty \).

References

  1. Almagor, S., Cadilhac, M., Mazowiecki, F., Pérez, G.A.: Weak cost register automata are still powerful. In: Hoshi, M., Seki, S. (eds.) DLT 2018. LNCS, vol. 11088, pp. 83–95. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98654-8_7

    Chapter  Google Scholar 

  2. Alur, R., D’Antoni, L., Deshmukh, J.V., Raghothaman, M., Yuan, Y.: Regular functions and cost register automata. In: 28th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2013, New Orleans, 25–28 June 2013, pp. 13–22 (2013). https://doi.org/10.1109/LICS.2013.65

  3. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2), 183–235 (1994). https://doi.org/10.1016/0304-3975(94)90010-8

    Article  MathSciNet  MATH  Google Scholar 

  4. Alur, R., La Torre, S., Pappas, G.J.: Optimal paths in weighted timed automata. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A. (eds.) HSCC 2001. LNCS, vol. 2034, pp. 49–62. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45351-2_8

    Chapter  Google Scholar 

  5. Babari, P., Droste, M., Perevoshchikov, V.: Weighted register automata and weighted logic on data words. In: Sampaio, A., Wang, F. (eds.) ICTAC 2016. LNCS, vol. 9965, pp. 370–384. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46750-4_21

    Chapter  Google Scholar 

  6. Babari, P., Droste, M., Perevoshchikov, V.: Weighted register automata and weighted logic on data words. Theor. Comput. Sci. 744, 3–21 (2018). https://doi.org/10.1016/j.tcs.2018.01.004

    Article  MathSciNet  MATH  Google Scholar 

  7. Behrmann, G., Fehnker, A., Hune, T., Larsen, K., Pettersson, P., Romijn, J., Vaandrager, F.: Minimum-cost reachability for priced time automata. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A. (eds.) HSCC 2001. LNCS, vol. 2034, pp. 147–161. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45351-2_15

    Chapter  Google Scholar 

  8. Bojańczyk, M., Klin, B., Lasota, S.: Automata theory in nominal sets. Logical Methods Comput. Sci. 10(3) (2014). https://doi.org/10.2168/LMCS-10(3:4)2014

  9. Bouyer, P.: A logical characterization of data languages. Inf. Process. Lett. 84(2), 75–85 (2002). https://doi.org/10.1016/S0020-0190(02)00229-6

    Article  MathSciNet  MATH  Google Scholar 

  10. Cheng, E.Y., Kaminski, M.: Context-free languages over infinite alphabets. Acta Informatica 35(3), 245–267 (1998). https://doi.org/10.1007/s002360050120

    Article  MathSciNet  MATH  Google Scholar 

  11. Demri, S., Lazić, R.: LTL with the freeze quantifier and register automata. ACM Trans. Comput. Log. 10(3), 16:1–16:30 (2009). https://doi.org/10.1145/1507244.1507246

    Article  MathSciNet  MATH  Google Scholar 

  12. Kaminski, M., Francez, N.: Finite-memory automata. Theoret. Comput. Sci. 134(2), 329–363 (1994). https://doi.org/10.1016/0304-3975(94)90242-9

    Article  MathSciNet  MATH  Google Scholar 

  13. Libkin, L., Tan, T., Vrgoč, D.: Regular expressions for data words. J. Comput. Syst. Sci. 81(7), 1278–1297 (2015). https://doi.org/10.1016/j.jcss.2015.03.005

    Article  MathSciNet  MATH  Google Scholar 

  14. Libkin, L., Vrgoč, D.: Regular path queries on graphs with data. In: 15th International Conference on Database Theory (ICDT 2012), pp. 74–85 (2012). https://doi.org/10.1145/2274576.2274585

  15. Lygeros, J., Tomlin, C., Sastry, S.: Controllers for reachability specifications for hybrid systems. Automatica 35(3), 349–370 (1999). https://doi.org/10.1016/S0005-1098(98)00193-9

    Article  MathSciNet  MATH  Google Scholar 

  16. Milo, T., Suciu, D., Vianu, V.: Typechecking for XML transformers. In: 19th ACM Symposium on Principles of Database Systems (PODS 2000), pp. 11–22 (2000). https://doi.org/10.1145/335168.335171

  17. Neven, F., Schwentick, T., Vianu, V.: Finite state machines for strings over infinite alphabets. ACM Trans. Comput. Log. 5(3), 403–435 (2004). https://doi.org/10.1145/1013560.1013562

    Article  MathSciNet  MATH  Google Scholar 

  18. Sakamoto, H., Ikeda, D.: Intractability of decision problems for finite-memory automata. Theor. Comput. Sci. 231(2), 297–308 (2000). https://doi.org/10.1016/S0304-3975(99)00105-X

    Article  MathSciNet  MATH  Google Scholar 

  19. Senda, R., Takata, Y., Seki, H.: Complexity results on register context-free grammars and register tree automata. In: Fischer, B., Uustalu, T. (eds.) ICTAC 2018. LNCS, vol. 11187, pp. 415–434. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-02508-3_22

    Chapter  Google Scholar 

  20. Senda, R., Takata, Y., Seki, H.: Generalized register context-free grammars. In: Martín-Vide, C., Okhotin, A., Shapira, D. (eds.) LATA 2019. LNCS, vol. 11417, pp. 259–271. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-13435-8_19

    Chapter  Google Scholar 

Download references

Acknowledgements

The authors thank the reviewers for providing valuable comments to the paper. This work was supported by JSPS KAKENHI Grant Number JP19H04083.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Seki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Seki, H., Yoshimura, R., Takata, Y. (2019). Optimal Run Problem for Weighted Register Automata. In: Hierons, R., Mosbah, M. (eds) Theoretical Aspects of Computing – ICTAC 2019. ICTAC 2019. Lecture Notes in Computer Science(), vol 11884. Springer, Cham. https://doi.org/10.1007/978-3-030-32505-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32505-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32504-6

  • Online ISBN: 978-3-030-32505-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics