Abstract
Register automata (RA) are a computational model that can handle data values by adding registers to finite automata. Recently, weighted register automata (WRA) were proposed by extending RA so that weights can be specified for transitions. In this paper, we first investigate decidability and complexity of decision problems on the weights of runs in WRA. We then propose an algorithm for the optimum run problem related to the above decision problems. For this purpose, we use a register type as an abstraction of the contents of registers, which is determined by binary relations (such as \(=\), <, etc.) handled by WRA. Also, we introduce a subclass where both the applicability of transition rules and the weights of transitions are determined only by a register type. We present a method of transforming a given WRA satisfying the assumption to a weighted directed graph such that the optimal run of WRA and the minimum weight path of the graph correspond to each other. Lastly, we discuss the optimal run problem for weighted timed automata as an example.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
We do not include the size of the weight part because of the assumption that the computation of the weights of a single transition and a single register can be done in constant time.
- 2.
If there is no such a switch \((p,\theta ) \vdash _{t^\prime ,d} (q,\theta [\varLambda \leftarrow d])\) for any \(d\in D\), we define the infimum as \(\infty \).
References
Almagor, S., Cadilhac, M., Mazowiecki, F., Pérez, G.A.: Weak cost register automata are still powerful. In: Hoshi, M., Seki, S. (eds.) DLT 2018. LNCS, vol. 11088, pp. 83–95. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98654-8_7
Alur, R., D’Antoni, L., Deshmukh, J.V., Raghothaman, M., Yuan, Y.: Regular functions and cost register automata. In: 28th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2013, New Orleans, 25–28 June 2013, pp. 13–22 (2013). https://doi.org/10.1109/LICS.2013.65
Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2), 183–235 (1994). https://doi.org/10.1016/0304-3975(94)90010-8
Alur, R., La Torre, S., Pappas, G.J.: Optimal paths in weighted timed automata. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A. (eds.) HSCC 2001. LNCS, vol. 2034, pp. 49–62. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45351-2_8
Babari, P., Droste, M., Perevoshchikov, V.: Weighted register automata and weighted logic on data words. In: Sampaio, A., Wang, F. (eds.) ICTAC 2016. LNCS, vol. 9965, pp. 370–384. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46750-4_21
Babari, P., Droste, M., Perevoshchikov, V.: Weighted register automata and weighted logic on data words. Theor. Comput. Sci. 744, 3–21 (2018). https://doi.org/10.1016/j.tcs.2018.01.004
Behrmann, G., Fehnker, A., Hune, T., Larsen, K., Pettersson, P., Romijn, J., Vaandrager, F.: Minimum-cost reachability for priced time automata. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A. (eds.) HSCC 2001. LNCS, vol. 2034, pp. 147–161. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45351-2_15
Bojańczyk, M., Klin, B., Lasota, S.: Automata theory in nominal sets. Logical Methods Comput. Sci. 10(3) (2014). https://doi.org/10.2168/LMCS-10(3:4)2014
Bouyer, P.: A logical characterization of data languages. Inf. Process. Lett. 84(2), 75–85 (2002). https://doi.org/10.1016/S0020-0190(02)00229-6
Cheng, E.Y., Kaminski, M.: Context-free languages over infinite alphabets. Acta Informatica 35(3), 245–267 (1998). https://doi.org/10.1007/s002360050120
Demri, S., Lazić, R.: LTL with the freeze quantifier and register automata. ACM Trans. Comput. Log. 10(3), 16:1–16:30 (2009). https://doi.org/10.1145/1507244.1507246
Kaminski, M., Francez, N.: Finite-memory automata. Theoret. Comput. Sci. 134(2), 329–363 (1994). https://doi.org/10.1016/0304-3975(94)90242-9
Libkin, L., Tan, T., Vrgoč, D.: Regular expressions for data words. J. Comput. Syst. Sci. 81(7), 1278–1297 (2015). https://doi.org/10.1016/j.jcss.2015.03.005
Libkin, L., Vrgoč, D.: Regular path queries on graphs with data. In: 15th International Conference on Database Theory (ICDT 2012), pp. 74–85 (2012). https://doi.org/10.1145/2274576.2274585
Lygeros, J., Tomlin, C., Sastry, S.: Controllers for reachability specifications for hybrid systems. Automatica 35(3), 349–370 (1999). https://doi.org/10.1016/S0005-1098(98)00193-9
Milo, T., Suciu, D., Vianu, V.: Typechecking for XML transformers. In: 19th ACM Symposium on Principles of Database Systems (PODS 2000), pp. 11–22 (2000). https://doi.org/10.1145/335168.335171
Neven, F., Schwentick, T., Vianu, V.: Finite state machines for strings over infinite alphabets. ACM Trans. Comput. Log. 5(3), 403–435 (2004). https://doi.org/10.1145/1013560.1013562
Sakamoto, H., Ikeda, D.: Intractability of decision problems for finite-memory automata. Theor. Comput. Sci. 231(2), 297–308 (2000). https://doi.org/10.1016/S0304-3975(99)00105-X
Senda, R., Takata, Y., Seki, H.: Complexity results on register context-free grammars and register tree automata. In: Fischer, B., Uustalu, T. (eds.) ICTAC 2018. LNCS, vol. 11187, pp. 415–434. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-02508-3_22
Senda, R., Takata, Y., Seki, H.: Generalized register context-free grammars. In: Martín-Vide, C., Okhotin, A., Shapira, D. (eds.) LATA 2019. LNCS, vol. 11417, pp. 259–271. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-13435-8_19
Acknowledgements
The authors thank the reviewers for providing valuable comments to the paper. This work was supported by JSPS KAKENHI Grant Number JP19H04083.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Seki, H., Yoshimura, R., Takata, Y. (2019). Optimal Run Problem for Weighted Register Automata. In: Hierons, R., Mosbah, M. (eds) Theoretical Aspects of Computing – ICTAC 2019. ICTAC 2019. Lecture Notes in Computer Science(), vol 11884. Springer, Cham. https://doi.org/10.1007/978-3-030-32505-3_6
Download citation
DOI: https://doi.org/10.1007/978-3-030-32505-3_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-32504-6
Online ISBN: 978-3-030-32505-3
eBook Packages: Computer ScienceComputer Science (R0)