Skip to main content

Deep Spectral Biometrics: Overview and Open Issues

  • Chapter
  • First Online:
Deep Biometrics

Part of the book series: Unsupervised and Semi-Supervised Learning ((UNSESUL))

  • 880 Accesses

Abstract

Spectral biometric systems record behavioral or physiological features, such as the face, iris or fingerprint, for identifying individuals. These systems function by acquiring images in various sub-bands of the electromagnetic spectrum. These systems recently gained traction for their use in applications such as defense, nighttime surveillance and airport security. Spectral biometric systems have shown promise since they are resistant to spoof attacks at sensor. Widely used biometric systems, work by acquiring images in the visible range of the electromagnetic spectrum. Such systems are examples of broadband imaging systems where information, in the captured images, is averaged over the visible spectrum. As a result, meaningful information is lost. On the other hand, spectral biometric systems acquire images in a different range such as Near-Infrared, Short-Wave Infrared or at a specific wavelength, retaining additional, useful information, beyond that which is recorded by human vision. This can then be exploited against vulnerabilities present in security systems. Further, this additional information can be used by machine learning/computer vision systems for robust personal identification. In this book chapter, we present recent advancements in spectral biometric systems, where deep learning based methods have been used to identify the biometric traits (face, iris and fingerprint) from spectral images. We also present an overview of spectral biometric systems and the limitations of deep learning based methods for such systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Jain, L. Hong, S. Pankanti, Biometric identification, Commun. ACM 43(2), 90–90 (2000)

    Article  Google Scholar 

  2. R.A. Khan, A. Meyer, H. Konik, S. Bouakaz, Framework for reliable, real-time facial expression recognition for low resolution images. Pattern Recogn. Lett. 34(10), 1159–1168 (2013)

    Article  Google Scholar 

  3. R.A. Khan, A. Meyer, H. Konik, S. Bouakaz, Pain detection through shape and appearance features, in 2013 IEEE International Conference on Multimedia and Expo (ICME) (2013), pp. 1–6. https://doi.org/10.1109/ICME.2013.6607608

  4. A.K. Jain, A. Ross, S. Prabhakar, An introduction to biometric recognition. IEEE Trans. Circuits Syst. Video Technol. 14(1), 4–20 (2004). https://doi.org/10.1109/TCSVT.2003.818349

    Article  Google Scholar 

  5. C. Ibarra-Castanedo, Quantitative subsurface defect evaluation by pulsed phase thermography: depth retrieval with the phase. PhD Thesis, Laval University (2005)

    Google Scholar 

  6. D.W. Allen, An overview of spectral imaging of human skin toward face recognition, in Face Recognition Across the Imaging Spectrum (Springer, Berlin, 2016), pp. 1–19

    Book  Google Scholar 

  7. M. Nischan, R. Joseph, J. Libby, J. Kerekes, Active spectral imaging. Lincoln Lab. J. 14, 131–144 (2003)

    Google Scholar 

  8. Q. Wei, J. Bioucas-Dias, N. Dobigeon, J.-Y. Tourneret, Hyperspectral and multispectral image fusion based on a sparse representation. IEEE Trans. Geosci. Remote Sens. 53(7), 3658–3668 (2015)

    Article  Google Scholar 

  9. G.A. Shaw, H.-h.K. Burke, Spectral imaging for remote sensing. Lincoln Lab. J. 14(1), 3–28 (2003)

    Google Scholar 

  10. D. Cabib, M. Adel, R.A. Buckwald, E. Horn, Spectral bio-imaging of the eye (Apr. 29, 2003). US Patent 6,556,853

    Google Scholar 

  11. T.S. Hyvarinen, E. Herrala, A. Dall’Ava, Direct sight imaging spectrograph: a unique add-on component brings spectral imaging to industrial applications, in Digital Solid State Cameras: Designs and Applications, vol. 3302 (International Society for Optics and Photonics, Bellingham, 1998), pp. 165–176

    Google Scholar 

  12. M. Dickinson, G. Bearman, S. Tille, R. Lansford, S. Fraser, Multi-spectral imaging and linear unmixing add a whole new dimension to laser scanning fluorescence microscopy. Biotechniques 31(6), 1272–1279 (2001)

    Article  Google Scholar 

  13. D.L. Farkas, D. Becker, Applications of spectral imaging: detection and analysis of human melanoma and its precursors. Pigment Cell Melanoma Res. 14(1), 2–8 (2001)

    Article  Google Scholar 

  14. H.J. Bouchech, S. Foufou, A. Koschan, M. Abidi, A kernelized sparsity-based approach for best spectral bands selection for face recognition. Multimed. Tools Appl. 74(19), 8631–8654 (2015). https://doi.org/10.1007/s11042-014-2350-2

    Article  Google Scholar 

  15. H. Steiner, A. Kolb, N. Jung, Reliable face anti-spoofing using multispectral SWIR imaging, in 2016 International Conference on Biometrics (ICB) (IEEE, Piscataway, 2016), pp. 1–8

    Book  Google Scholar 

  16. R. Raghavendra, K.B. Raja, S. Venkatesh, C. Busch, Face presentation attack detection by exploring spectral signatures, in 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) (IEEE, Piscataway, 2017), pp. 672–679

    Google Scholar 

  17. R. Raghavendra, K.B. Raja, S. Venkatesh, F.A. Cheikh, C. Busch, On the vulnerability of extended multispectral face recognition systems towards presentation attacks, in 2017 IEEE International Conference on Identity, Security and Behavior Analysis (ISBA) (IEEE, Piscataway, 2017), pp. 1–8

    Google Scholar 

  18. N. Vetrekar, R. Raghavendra, K.B. Raja, R. Gad, C. Busch, Extended spectral to visible comparison based on spectral band selection method for robust face recognition, in 2017 12th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2017) (IEEE, Piscataway, 2017), pp. 924–930

    Google Scholar 

  19. T.I. Dhamecha, A. Nigam, R. Singh, M. Vatsa, Disguise detection and face recognition in visible and thermal spectrums, in 2013 International Conference on Biometrics (ICB) (2013), pp. 1–8. https://doi.org/10.1109/ICB.2013.6613019

  20. H. Chang, A. Koschan, B. Abidi, M. Abidi, Physics-based fusion of multispectral data for improved face recognition, in 18th International Conference on Pattern Recognition (ICPR’06) (2006)

    Google Scholar 

  21. R. Ramachandra, C. Busch, Presentation attack detection methods for face recognition systems: a comprehensive survey. ACM Comput. Surv. 50(1), 8:1–8:37 (2017). https://doi.org/10.1145/3038924

    Article  Google Scholar 

  22. J.Y. Zhu, W.S. Zheng, J.H. Lai, S.Z. Li, Matching NIR face to VIS face using transduction. IEEE Trans. Inf. Forensics Secur. 9(3), 501–514 (2014). https://doi.org/10.1109/TIFS.2014.2299977

    Article  Google Scholar 

  23. N.D. Kalka, T. Bourlai, B. Cukic, L. Hornak, Cross-spectral face recognition in heterogeneous environments: a case study on matching visible to short-wave infrared imagery, in 2011 International Joint Conference on Biometrics (IJCB) (2011), pp. 1–8. https://doi.org/10.1109/IJCB.2011.6117586

  24. B. Klare, A.K. Jain, Heterogeneous face recognition: matching NIR to visible light images, in 2010 20th International Conference on Pattern Recognition (2010), pp. 1513–1516. https://doi.org/10.1109/ICPR.2010.374

  25. H. Chang, Y. Yao, A. Koschan, B. Abidi, M. Abidi, Spectral range selection for face recognition under various illuminations, in 2008 15th IEEE International Conference on Image Processing (2008), pp. 2756–2759. https://doi.org/10.1109/ICIP.2008.4712365

  26. F. Nicolo, N.A. Schmid, Long range cross-spectral face recognition: matching SWIR against visible light images. IEEE Trans. Inf. Forensics Secur. 7(6), 1717–1726 (2012). https://doi.org/10.1109/TIFS.2012.2213813

    Article  Google Scholar 

  27. H. Méndez, C.S. Martín, J. Kittler, Y. Plasencia, E. García-Reyes, Face recognition with LWIR imagery using local binary patterns, in Advances in Biometrics, ed. by M. Tistarelli, M.S. Nixon (Springer, Berlin, 2009), pp. 327–336

    Chapter  Google Scholar 

  28. B. Thirimachos, R. Arun, C. Cunjian, H. Lawrence, A study on using mid-wave infrared images for face recognition (2012). https://doi.org/10.1117/12.918899

  29. N. Short, S. Hu, P. Gurram, K. Gurton, A. Chan, Improving cross-modal face recognition using polarimetric imaging. Opt. Lett. 40(6), 882–885 (2015). https://doi.org/10.1364/OL.40.000882, http://ol.osa.org/abstract.cfm?URI=ol-40-6-882

    Article  Google Scholar 

  30. K.A. Nixon, R.K. Rowe, Multispectral fingerprint imaging for spoof detection, in Biometric Technology for Human Identification II, vol. 5779 (International Society for Optics and Photonics, Bellingham, 2005), pp. 214–226

    Google Scholar 

  31. R.K. Rowe, K.A. Nixon, S.P. Corcoran, Multispectral fingerprint biometrics, in Information Assurance Workshop, 2005. IAW’05. Proceedings from the Sixth Annual IEEE SMC (IEEE, Piscataway, 2005), pp. 14–20

    Google Scholar 

  32. D. Zhang, Z. Guo, Y. Gong, Multiple band selection of multispectral dorsal hand, in Multispectral Biometrics (Springer, Berlin, 2016), pp. 187–206

    Google Scholar 

  33. C. Boyce, A. Ross, M. Monaco, L. Hornak, X. Li, Multispectral iris analysis: a preliminary study51, in Conference on Computer Vision and Pattern Recognition Workshop, 2006. CVPRW’06 (IEEE, Piscataway, 2006), pp. 51–51

    Google Scholar 

  34. A. Ross, R. Pasula, L. Hornak, Exploring multispectral iris recognition beyond 900 nm, in IEEE 3rd International Conference on Biometrics: Theory, Applications, and Systems, 2009. BTAS’09 (IEEE, Piscataway, 2009), pp. 1–8

    Google Scholar 

  35. D. Zhang, Z. Guo, G. Lu, L. Zhang, W. Zuo, An online system of multispectral palmprint verification, IEEE Trans. Instrum. Measure. 59(2), 480–490 (2010)

    Article  Google Scholar 

  36. Z. Guo, D. Zhang, L. Zhang, W. Liu, Feature band selection for online multispectral palmprint recognition, IEEE Trans. Inf. Forensics Secur. 7(3), 1094–1099 (2012)

    Article  Google Scholar 

  37. R. Munir, R.A. Khan, An extensive review on spectral imaging in biometric systems: challenges and advancements. arXiv preprint arXiv:1807.05771

    Google Scholar 

  38. R.A. Khan, Detection of emotions from video in non-controlled environment, Theses, Université Claude Bernard - Lyon I, Nov. 2013. https://tel.archives-ouvertes.fr/tel-01166539

    Google Scholar 

  39. R.A. Khan, A. Crenn, A. Meyer, S. Bouakaz, A novel database of children’s spontaneous facial expressions (LIRIS-CSE). Image Vision Comput. 83–84, 61–69 (2019)

    Article  Google Scholar 

  40. Y. LeCun, K. Kavukcuoglu, C. Farabet, Convolutional networks and applications in vision, in Proceedings of 2010 IEEE International Symposium on Circuits and Systems (ISCAS) (IEEE, Piscataway, 2010), pp. 253–256

    Google Scholar 

  41. I. Hadji, R.P. Wildes, What do we understand about convolutional networks? CoRR abs/1803.08834

    Google Scholar 

  42. M.D. Zeiler, R. Fergus, Visualizing and understanding convolutional networks, in Computer Vision – ECCV 2014, ed. by D. Fleet, T. Pajdla, B. Schiele, T. Tuytelaars (Springer, Cham, 2014), pp. 818–833

    Chapter  Google Scholar 

  43. T. Bourlai, B. Cukic, Multi-spectral face recognition: identification of people in difficult environments, in 2012 IEEE International Conference on Intelligence and Security Informatics (2012), pp. 196–201. https://doi.org/10.1109/ISI.2012.6284307

  44. B.F. Klare, A.K. Jain, Heterogeneous face recognition using kernel prototype similarities. IEEE Trans. Pattern Anal. Machine Intell. 35(6), 1410–1422 (2013)

    Article  Google Scholar 

  45. E. Angelopoulou, The reflectance spectrum of human skin, Technical Reports (CIS) (1999), p. 584

    Google Scholar 

  46. D.W.A. Catherine C. Cooksey, B.K. Tsai, Spectral reflectance variability of skin and attributing factors (2015). https://doi.org/10.1117/12.2184485

  47. H. Chang, H. Harishwaran, M. Yi, A. Koschan, B. Abidi, M. Abidi, An indoor and outdoor, multimodal, multispectral and multi-illuminant database for face recognition, in 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW’06) (2006), pp. 54–54. https://doi.org/10.1109/CVPRW.2006.28

  48. D.A. Socolinsky, A. Selinger, Thermal face recognition in an operational scenario, in Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004, vol. 2 (IEEE, Piscataway, 2004)

    Google Scholar 

  49. B. Martinez, X. Binefa, M. Pantic, Facial component detection in thermal imagery, in 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Workshops (2010), pp. 48–54. https://doi.org/10.1109/CVPRW.2010.5543605

  50. K.P. Gurton, A.J. Yuffa, G.W. Videen, Enhanced facial recognition for thermal imagery using polarimetric imaging. Opt. Lett. 39(13), 3857–3859 (2014). https://doi.org/10.1364/OL.39.003857, http://ol.osa.org/abstract.cfm?URI=ol-39-13-3857

    Article  Google Scholar 

  51. S. Hu, J. Choi, A.L. Chan, W.R. Schwartz, Thermal-to-visible face recognition using partial least squares. J. Opt. Soc. Am. A 32(3), 431–442 (2015). https://doi.org/10.1364/JOSAA.32.000431, http://josaa.osa.org/abstract.cfm?URI=josaa-32-3-431

    Article  Google Scholar 

  52. L.J. Denes, P. Metes, Y. Liu, Hyperspectral Face Database (Carnegie Mellon University, The Robotics Institute, Pittsburgh, 2002)

    Google Scholar 

  53. W. Di, L. Zhang, D. Zhang, Q. Pan, Studies on hyperspectral face recognition in visible spectrum with feature band selection. IEEE Trans. Syst. Man, Cybern. A: Syst Humans 40(6), 1354–1361 (2010)

    Article  Google Scholar 

  54. M. Uzair, A. Mahmood, A. Mian, Hyperspectral face recognition with spatiospectral information fusion and PLS regression. IEEE Trans. Image Process. 24(3), 1127–1137 (2015). https://doi.org/10.1109/TIP.2015.2393057

    Article  MathSciNet  MATH  Google Scholar 

  55. M. Uzair, A. Mahmood, A.S. Mian, Hyperspectral face recognition using 3D-DCT and partial least squares. in British Machine Vision Conference (2013)

    Google Scholar 

  56. B. Zhang, L. Zhang, D. Zhang, L. Shen, Directional binary code with application to polyU near-infrared face database. Pattern Recog. Lett. 31(14), 2337–2344 (2010)

    Article  Google Scholar 

  57. S. Z. Li, Z. Lei, M. Ao, The HFB face database for heterogeneous face biometrics research, in IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2009. CVPR Workshops 2009 (IEEE, Piscataway, 2009), pp. 1–8

    Google Scholar 

  58. S.Z. Li, D. Yi, Z. Lei, S. Liao, The CASIA NIR-VIS 2.0 face database, in 2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops (2013), pp. 348–353. https://doi.org/10.1109/CVPRW.2013.59

  59. V. Sharma, A. Diba, T. Tuytelaars, L. Van Gool, Hyperspectral CNN for image classification & band selection, with application to face recognition, Tech. rep. (Katholieke Universiteit, Leuven, 2016)

    Google Scholar 

  60. A. Mahendran, A. Vedaldi, Understanding deep image representations by inverting them, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2015), pp. 5188–5196

    Google Scholar 

  61. C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich, et al., Going deeper with convolutions, in Conference on Computer Vision and Pattern Recognition (2015)

    Google Scholar 

  62. M. Peng, C. Wang, T. Chen, G. Liu, NIRFaceNet: a convolutional neural network for near-infrared face identification. Information 7(4), 61 (2016)

    Article  Google Scholar 

  63. H. Abdi, L.J. Williams, Principal component analysis, Wiley interdisciplinary reviews. Comput. Stat 2(4), 433–459 (2010)

    Article  Google Scholar 

  64. S. Wold, K. Esbensen, P. Geladi, Principal component analysis. Chemom. Intell. Lab. Syst. 2(1-3), 37–52 (1987)

    Article  Google Scholar 

  65. S. Farokhi, S.M. Shamsuddin, U.U. Sheikh, J. Flusser, M. Khansari, K. Jafari-Khouzani, Near infrared face recognition by combining Zernike moments and undecimated discrete wavelet transform. Digital Signal Process. 31, 13–27 (2014)

    Article  Google Scholar 

  66. S. Farokhi, U.U. Sheikh, J. Flusser, B. Yang, Near infrared face recognition using Zernike moments and Hermite kernels. Inf. Sci. 316, 234–245 (2015)

    Article  Google Scholar 

  67. P. Wild, P. Radu, J. Ferryman, On fusion for multispectral iris recognition, in 8th IAPR International Conference on Biometrics (2015), pp. 31–73

    Google Scholar 

  68. C.K. Boyce, Multispectral iris recognition analysis: techniques and evaluation, Ph.D. thesis, Citeseer, 2006

    Google Scholar 

  69. A. Sharma, S. Verma, M. Vatsa, R. Singh, On cross spectral periocular recognition, in 2014 IEEE International Conference on Image Processing (ICIP) (IEEE, Piscataway, 2014), pp. 5007–5011

    Book  Google Scholar 

  70. F.M. Algashaam, K. Nguyen, M. Alkanhal, V. Chandran, W. Boles, J. Banks, Multispectral periocular classification with multimodal compact multi-linear pooling. IEEE Access 5, 14,572–14,578 (2017)

    Article  Google Scholar 

  71. F. Alonso-Fernandez, J. Bigun, A survey on periocular biometrics research. Pattern Recog. Lett. 82, 92–105 (2016)

    Article  Google Scholar 

  72. K. Nguyen, C. Fookes, R. Jillela, S. Sridharan, A. Ross, Long range iris recognition: a survey. Pattern Recog. 72, 123–143 (2017)

    Article  Google Scholar 

  73. M. De Marsico, A. Petrosino, S. Ricciardi, Iris recognition through machine learning techniques: a survey. Pattern Recog. Lett. 82, 106–115 (2016)

    Article  Google Scholar 

  74. IITD iris database. http://web.iitd.ac.in/~biometrics/Database_Iris.htm

  75. A. Kumar, A. Passi, Comparison and combination of iris matchers for reliable personal authentication. Pattern Recog. Lett. 43(3), 1016–1026 (2010)

    Article  MATH  Google Scholar 

  76. CASIA iris image database. https://doi.org/http://biometrics.idealtest.org/

  77. K.W. Bowyer, P.J. Flynn, The ND-iris-0405 iris image dataset, arXiv preprint arXiv:1606.04853

    Google Scholar 

  78. University of Notre Dame, Computer Vision Research Lab. https://cvrl.nd.edu/projects/data/

  79. A. Rattani, R. Derakhshani, S.K. Saripalle, V. Gottemukkula, ICIP 2016 competition on mobile ocular biometric recognition, in 2016 IEEE International Conference on Image Processing (ICIP) (IEEE, Piscataway, 2016), pp. 320–324

    Google Scholar 

  80. G. Santos, E. Grancho, M.V. Bernardo, P.T. Fiadeiro, Fusing iris and periocular information for cross-sensor recognition. Pattern Recog. Lett. 57, 52–59 (2015)

    Article  Google Scholar 

  81. S. Minaee, A. Abdolrashidiy, Y. Wang, An experimental study of deep convolutional features for iris recognition, in Signal Processing in Medicine and Biology Symposium (SPMB), 2016 IEEE (IEEE, Piscataway, 2016), pp. 1–6

    Google Scholar 

  82. Convolutional Neural Networks for visual recognition. http://cs231n.github.io/convolutional-networks/#comp

  83. K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition, arXiv preprint arXiv:1409.1556

    Google Scholar 

  84. R. Farouk, Iris recognition based on elastic graph matching and Gabor wavelets. Comput. Vis. Image Underst. 115(8), 1239–1244 (2011)

    Article  Google Scholar 

  85. S. Minaee, A. Abdolrashidi, Y. Wang, Iris recognition using scattering transform and textural features, in 2015 IEEE Signal Processing and Signal Processing Education Workshop (SP/SPE) (IEEE, Piscataway, 2015), pp. 37–42

    Book  Google Scholar 

  86. A. Bosch, A. Zisserman, X. Munoz, Representing shape with a spatial pyramid kernel, in Proceedings of the 6th ACM international conference on Image and video retrieval (ACM, New York, 2007), pp. 401–408

    Google Scholar 

  87. N. Dalal, B. Triggs, Histograms of oriented gradients for human detection, in IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005. CVPR 2005, vol. 1 (IEEE, Piscataway, 2005), pp. 886–893

    Google Scholar 

  88. T. Ojala, M. Pietikäinen, D. Harwood, A comparative study of texture measures with classification based on featured distributions. Pattern Recog. 29(1), 51–59 (1996)

    Article  Google Scholar 

  89. T. Ahonen, A. Hadid, M. Pietikainen, Face description with local binary patterns: application to face recognition. IEEE Trans. Pattern Anal. Mach. Intel. 28(12), 2037–2041 (2006)

    Article  MATH  Google Scholar 

  90. L. Wolf, T. Hassner, Y. Taigman, Descriptor based methods in the wild, in Workshop on faces in ’real-life’ images: detection, alignment, and recognition, (2008)

    Google Scholar 

  91. A. Gangwar, A. Joshi, DeepIrisNet: deep iris representation with applications in iris recognition and cross-sensor iris recognition, in 2016 IEEE International Conference on Image Processing (ICIP) (IEEE, Piscataway, 2016), pp. 2301–2305

    Google Scholar 

  92. R. Garg, Y. Baweja, S. Ghosh, M. Vatsa, R. Singh, N. Ratha, Heterogeneity aware deep embedding for mobile periocular recognition. arXiv preprint arXiv:1811.00846

    Google Scholar 

  93. E. Tola, V. Lepetit, P. Fua, Daisy: an efficient dense descriptor applied to wide-baseline stereo. IEEE Trans. Pattern Anal. Mach. Intel. 32(5), 815–830 (2010)

    Article  Google Scholar 

  94. K. Bensid, D. Samai, F.Z. Laallam, A. Meraoumia, Deep learning feature extraction for multispectral palmprint identification. J. Electr. Imag. 27(3), 033018 (2018)

    Article  Google Scholar 

  95. A. Meraoumia, L. Laimeche, H. Bendjenna, S. Chitroub, Do we have to trust the deep learning methods for palmprints identification?, in Proceedings of the Mediterranean Conference on Pattern Recognition and Artificial Intelligence (ACM, New York, 2016), pp. 85–91

    Google Scholar 

  96. A. Meraoumia, F. Kadri, H. Bendjenna, S. Chitroub, A. Bouridane, Improving biometric identification performance using PCANET deep learning and multispectral palmprint, in Biometric Security and Privacy (Springer, Berlin, 2017), pp. 51–69

    Google Scholar 

  97. T. Connie, A.T.B. Jin, M.G.K. Ong, D.N.C. Ling, An automated palmprint recognition system. Image Vis. Comput. 23(5), 501–515 (2005)

    Article  Google Scholar 

  98. D. Zhang, W. Zuo, F. Yue, A comparative study of palmprint recognition algorithms. ACM Comput. Surv. 44(1), 2 (2012)

    Article  Google Scholar 

  99. Y. Hao, Z. Sun, T. Tan, Comparative studies on multispectral palm image fusion for biometrics, in Asian Conference on Computer Vision (Springer, Berlin, 2007), pp. 12–21

    Google Scholar 

  100. Y.-T. Luo, L.-Y. Zhao, B. Zhang, W. Jia, F. Xue, J.-T. Lu, Y.-H. Zhu, B.-Q. Xu, Local line directional pattern for palmprint recognition. Pattern Recog. 50, 26–44 (2016)

    Article  Google Scholar 

  101. R. Raghavendra, C. Busch, Novel image fusion scheme based on dependency measure for robust multispectral palmprint recognition. Pattern Recog. 47(6), 2205–2221 (2014)

    Article  Google Scholar 

  102. Y. Hao, Z. Sun, T. Tan, C. Ren, Multispectral palm image fusion for accurate contact-free palmprint recognition, in 15th IEEE International Conference on Image Processing, 2008. ICIP 2008 (IEEE, Piscataway, 2008), pp. 281–284

    Google Scholar 

  103. PolyU multispectral palmprint database. http://www.comp.polyu.edu.hk/~biometrics/MultispectralPalmprint/MSP.htm

  104. D.D. Zhang, W. Kong, J. You, M. Wong, Online palmprint identification. IEEE Trans. Pattern Anal. Mach. Intell. 25, 1041 (2003)

    Article  Google Scholar 

  105. D. Han, Z. Guo, D. Zhang, Multispectral palmprint recognition using wavelet-based image fusion, in 9th International Conference on Signal Processing, 2008. ICSP 2008 (IEEE, Piscataway, 2008), pp. 2074–2077

    Google Scholar 

  106. Z. Guo, D. Zhang, L. Zhang, W. Zuo, G. Lu, Empirical study of light source selection for palmprint recognition. Pattern Recog. Lett. 32(2), 120–126 (2011)

    Article  Google Scholar 

  107. CASIA-ms-palmprintv1. http://biometrics.idealtest.org/

  108. M.D. Bounneche, L. Boubchir, A. Bouridane, B. Nekhoul, A. Ali-Chérif, Multi-spectral palmprint recognition based on oriented multiscale log-Gabor filters. Neurocomputing 205, 274–286 (2016)

    Article  Google Scholar 

  109. L. Fei, B. Zhang, Y. Xu, L. Yan, Palmprint recognition using neighboring direction indicator. IEEE Trans. Human-Mach. Syst. 46(6), 787–798 (2016)

    Article  Google Scholar 

  110. L. Fei, Y. Xu, W. Tang, D. Zhang, Double-orientation code and nonlinear matching scheme for palmprint recognition. Pattern Recog. 49, 89–101 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rizwan Ahmed Khan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Munir, R., Ahmed Khan, R. (2020). Deep Spectral Biometrics: Overview and Open Issues. In: Jiang, R., Li, CT., Crookes, D., Meng, W., Rosenberger, C. (eds) Deep Biometrics. Unsupervised and Semi-Supervised Learning. Springer, Cham. https://doi.org/10.1007/978-3-030-32583-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32583-1_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32582-4

  • Online ISBN: 978-3-030-32583-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics