
Globally-Aware Multiple Instance Classifier for Breast Cancer 
Screening

Yiqiu Shen1, Nan Wu1, Jason Phang1, Jungkyu Park1, Gene Kim2, Linda Moy2, Kyunghyun 
Cho1,3,4,5, Krzysztof J. Geras1,2

1Center for Data Science, New York University, New York, USA

2Department of Radiology, New York University School of Medicine, New York, USA

3Department of Computer Science, Courant Institute, New York University, New York, USA

4Facebook AI Research, New York, USA

5CIFAR Azrieli Global Scholar, Toronto, Canada

Abstract

Deep learning models designed for visual classification tasks on natural images have become 

prevalent in medical image analysis. However, medical images differ from typical natural images 

in many ways, such as significantly higher resolutions and smaller regions of interest. Moreover, 

both the global structure and local details play important roles in medical image analysis tasks. To 

address these unique properties of medical images, we propose a neural network that is able to 

classify breast cancer lesions utilizing information from both a global saliency map and multiple 

local patches. The proposed model outperforms the ResNet-based baseline and achieves 

radiologist-level performance in the interpretation of screening mammography. Although our 

model is trained only with image-level labels, it is able to generate pixel-level saliency maps that 

provide localization of possible malignant findings.
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1 Introduction

As the second leading cause of cancer death among women in the US, breast cancer has 

been studied for decades. While studies have shown screening mammography has 

significantly reduced breast cancer mortality, it is an imperfect tool [8]. To address its 

limitations, convolutional neural networks (CNN) designed for computer vision tasks on 

natural images have been applied. For instance, VGGNet [11], designed for object 

classification on ImageNet [2], has been applied to breast density classification [13] and 

Faster R-CNN [9] has been adapted to localize suspicious findings in mammograms [10]. 
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We refer the readers to [5] for a comprehensive review of prior work on machine learning for 

mammography.

The compatibility between the models designed for natural images and the distinct 

properties of medical images remains an open question. Firstly, medical images are usually 

of a much higher resolution than typical natural images, so deep CNNs that work well for 

natural images may not be applicable to medical images due to GPU memory constraints. 

Moreover, for many applications, regions of interest (ROI) in medical images, such as 

lesions and calcifications, are proportionally smaller in size compared to those in natural 

images. Fine details, often only a few pixels in size, along with global features such as the 

spatial distribution of radiodense tissue determine the labels. In addition, while natural 

images can be aggressively downsampled and preserve the information necessary for 

classification, significant amounts of information could be lost from downsampling medical 

images, making the correct diagnosis unattainable.

Contributions.

In this work, we address the aforementioned issues by proposing a novel model for the 

classification of medical images. The proposed model preserves global information in a 

saliency map and aggregates important details with a Multiple Instance Learning (MIL) 

framework. Unlike existing approaches that rely on pixel-level lesion annotations [10,14], 

our model only requires image-level supervision and is able to generate pixel-level saliency 

maps that highlight suspicious lesions. In addition, our model is equipped with an attention 

mechanism that enables it to select informative image patches, making the classification 

process interpretable. When trained and evaluated on more than 1 million high-resolution 

breast cancer screening exams, our model outperforms a ResNet-based baseline [14] and 

achieves radiologist-level performance.

Related Works.

Existing methods have approached the breast cancer detection problem using techniques 

such as MIL [16] and 3D CNNs [12]. Our model is inspired by works on weakly supervised 

object detection. Recent progress demonstrates that CNN classifiers, trained with image-

level labels, are able to perform semantic segmentation at the pixel level [3,4,15]. This is 

achieved in two steps. First, a backbone CNN converts the input image to a saliency map 

(SM) which highlights the discriminative regions. A global pooling operator then collapses 

the SM into scalar predictions which makes the entire model trainable end-to-end. To make 

an image-level prediction, most existing models rely on the SM which often neglects fine-

grained details. In contrast, our model also leverages local information from ROI proposals 

using a dedicated patch-level classifier. In Sect. 3.2, we demonstrate that the ability to focus 

on fine visual detail is important for classification.

2 Methods

We formulate our task as a multi-label classification. Given a grayscale high-resolution 

image x ∈ ℝH,W, we would like to predict the label y, where yc denotes whether class c ∈ ℂ 
is present. As shown in Fig. 1, the Globally-Aware Multiple Instance Classifier (GMIC) 
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consists of three modules: (i) The localization module processes x to generate a SM, denoted 

by A, which indicates approximate localizations of ROIs. (ii) The detection module uses A 
to retrieve K patches from x as refined proposals for ROIs. (iii) We use an MIL framework 

to aggregate information from retrieved patches and generate the final prediction.

2.1 Localization Module

As illustrated in Fig. 1, the localization module first uses a CNN fd(·) to extract relevant 

features from x. Due to memory constraints, input images are usually down-sampled before 

fd(·) [15]. For mammograms, however, down-sampling distorts important visual details such 

as lesion margins and blurs small ROIs. In order to retain the original resolution, we 

parameterize fd(·) as a ResNet-22 [14] and remove its global average pooling and fully 

connected layers. This model has fewer filters than the original ResNet architectures in each 

layer in order to process the image at the full resolution while keeping GPU memory 

consumption manageable. The feature maps obtained after the last residual block are 

transformed into the SM A ∈ ℝℎ, w, |ℂ| using 1 × 1 convolution with sigmoid non-linearity. 

Each element of A, Ai, j
c  ∈ [0, 1], denotes a score that indicates the contribution of spatial 

location (i, j) towards classifying the input as class c.

2.2 Detection Module

Due to its limited width, fd(·) is only able to provide coarse localization. We propose using 

patches as ROI proposals to complement the localization module with fine-grained detail. 

We designed a greedy algorithm (Algorithm 1) to retrieve K proposals for ROIs, 

x̃k ∈ ℝℎc, wc, from the input x. In our experiments, we set K = 6, and wc = hc = 256. The 

reset rule in line 12 explicitly ensures that extracted ROI proposals do not significantly 

overlap with each other.

Algorithm 1.

Retrieve the ROIs

Require: x ∈ ℝH,W, A ∈ ℝℎ, w, |ℂ|, K

Ensure: O = {x̃k | x̃k ∈ ℝℎc, wc}
1: O = ϕ

2: for each class c ∈ ℂ do

3:
 Ãc

 = min-max-normalization(Ac)

4: end for

5: Â = ∑c ∈ ℂ Ãc

6:
l denotes an arbitrary ℎc

ℎ
H × wc

w
W  rectangular patch on Â

7: fc(l, Â) = ∑(i, j) ∈ l Â[i, j]
8: for each 1, 2,...,K do
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9:
 l* = argmaxl fc(l, Â)

10:  L = position of l* in x

11:  O = O ∪ {L}

12:
 Â[i, j] = 0, ∀(i, j) ∈ l*

13: end for

14: return O

2.3 Multiple Instance Learning Module

Since ROI patches are retrieved using a coarse saliency map, the information relevant for 

classification carried in each patch varies significantly. To address this, we apply an MIL 

framework to aggregate information from ROI patches. A detection network ft(·) is first 

applied on every instance x̃k and converts them into feature vectors h̃k ∈ ℝL. We use L = 128 

in all experiments. We parameterize ft(·) as a ResNet-18 (pretrained on ImageNet [2]). Since 

not all ROI patches are relevant to the prediction, we use the Gated Attention Mechanism 

proposed in [6] to let the model select informative patches. The selection process yields an 

attention-weighted representation z = ∑k = 1
K α1h̃k, where attention score αk ∈ [0, 1] 

indicates the relevance of each patch x̃k. The representation z is then passed to a fully 

connected layer with sigmoid activation to generate a prediction ŷmil = sigm(wmilTz), where 

wmil ∈ ℝL × |ℂ| are learnable parameters.

2.4 Training

It is difficult to make this model trainable end-to-end. Since the detection module is not 

differentiable, the gradient from the training loss L(y, ŷmil) will not flow into the localization 

module. Inspired by [3], we circumvent this problem with a scheme that simultaneously 

trains the localization module and the MIL module.An aggregation function 

fagg(Ac):ℝℎ, w [0, 1] is designed to map the SM for each class c into a prediction ŷ1oc
c . The 

design of fagg(Ac) has been extensively studied [4]. Global Average Pooling (GAP) would 

dilute the prediction as most of the spatial locations in Ac correspond to background and 

provide little training signal. On the other hand, Global Max Pooling (GMP) only 

backpropagates gradient into a single spatial location which makes the learning process slow 

and unstable. In our work, we use a soft balance between GAP and GMP : 

fagg(Ac) = 1
|H+|

∑(i, j) ∈ H+Ai, j
c , where H+ denotes the set containing locations of top t% 

values in Ac, and t is a hyper-parameter. The prediction ŷ1oc
c = fagg(Ac) is a valid probability 

as Ai, j
c ∈ [0, 1]. To fine-tune the SM and prevent the localization module from highlighting 

irrelevant areas, we impose the following regularization on Ac:Lreg(Ac) = ∑(i, j) |Ai, j
c |β, where 

β is a hyper-parameter. In summary, the loss function used to train the entire model is:
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L(y, ŷ) = ∑
c ∈ ℂ

BCE(yc, ŷloc
c ) + BCE(yc, ŷmil

c ) + λLreg(Ac), (1)

where BCE(·,·) is the binary cross-entropy and λ is a hyper-parameter. In the inference 

stage, the prediction is computed as ŷ = 1
2 (ŷmil + ŷloc).

3 Experiments

The proposed model is evaluated on the task of predicting whether any benign or malignant 

findings are present in a mammography exam. The dataset includes 229,426 exams 

(1,001,093 images). Across the entire data set, malignant findings were present in 985 

breasts and benign findings in 5,556 breasts. As shown in Fig. 2, each exam contains four 

grayscale images (2944×1920) representing two standard views (CC and MLO) for both left 

and right breasts. A label y ∈ {0, 1}2 is associated with each breast where yc ∈ {0,1} (c ∈ 
{benign, malignant}) denotes the presence or absence of a benign/malignant finding in a 

breast. All findings are confirmed by a biopsy. In each exam, two views on the same breast 

share the same label. A small fraction (<1%) of the data are associated with pixel-level 

segmentation Mc ∈ {0, 1}H × W where Mi, j
c  = 1 if pixel i, j belongs to the findings of class c. 

In all experiments, segmentations are only used for evaluation.

3.1 Experimental Set-up and Evaluation Metrics

We adopt the same pre-processing as [14]. The dataset is divided into disjoint training 

(186,816), validation (28,462) and test (14,148) sets. In each iteration, we train the model 

using all exams that contain at least one benign or malignant finding and an equal number of 

randomly sampled negative exams. All images are cropped to 2944×1920 pixels and 

normalized. The training loss is optimized using Adam [7]. We optimize the hyper-

parameters using random search [1]. Specifically, we search on a logarithmic scale for the 

learning rate η ∈ 10[−5.5, −3.8], the regularization weight λ ∈ 10[−5, −2.8], the regularization 

exponent β ∈ e[−1.6, 1.6], and the pooling threshold t ∈ e[−5, −1.5]. We train 100 separate 

models, each for 40 epochs.

For classification performance, we report the area under the ROC curve (AUC) on the 

breastlevel. As our model generates a prediction for each image and each breast is associated 

with two images (CC and MLO), we define breast-level predictions as the average of the two 

image-level predictions. To quantitatively evaluate our model’s localization ability, we use 

the continuous F1 score, where precision (P) and recall (R) are defined as: 

P = (∑i, j ∈ McAi, j
c )/(∑i, jAi, j

c ) and R = ∑i, j ∈ McAi, j
c /|Mc|, and Mc denotes the 

segmentation label and Ac is the SM for class c. On the test set, these metrics are averaged 

over images for which segmentation labels are available.

3.2 Classification Performance

In this section, we report the average test performance of the 5 models from the hyper-

parameter search that achieved the highest validation AUC on malignant classification 

(referred to as top-5). In order to understand the impact of each module, we evaluate GMIC 
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under a number of settings. GMIC-loc uses ŷloc as its predictions and GMIC-mil uses ŷmil. 

As shown in Table 1, both variants of GMIC outperform the baseline, especially in 

predicting malignancy. The full model, GMIC, using the aggregated prediction 

ŷ =
ŷ1oc + ŷmil

2 , attains higher AUC than GMIC-loc and GMIC-mil. We attribute this 

improvement to the synergy of local and global information. To empirically validate this 

conjecture, we test three additional models: GMIC-noattn assigns equal attentions on each 

ROI patch; GMIC-random outputs prediction ŷrandom by applying MIL module on patches 

randomly selected from the input image; GMIC-loc-random combines the predictions from 

GMIC-loc and GMIC-random ŷ =
ŷ1oc + ŷrandom

2 . As Table 1 shows, GMIC-noattn is less 

accurate than GMIC-mil, suggesting that the attention mechanism in MIL module is 

essential for classification. Moreover, GMIC-random is weaker than GMIC-mil and GMIC-

loc-random does not demonstrate any performance gain on top of GMIC-loc. These 

observations confirm our hypothesis that applying the MIL module on high-resolution ROI 

patches supplements the global information extracted by SM and refines predictions.

To evaluate the clinical value of our model, we compare the performance of GMIC with 

radiologists using data from the reader study described in [14].This reader study includes 14 

radiologists, each providing a probability estimate of malignancy for 720 screening exams 

(1440 breasts). The radiologists were only shown images for each exam with no other data. 

To further improve our predictions, we ensemble the predictions of the top-5 models. As 

shown in Fig. 3, the ensemble GMIC model achieves higher AUC (0.876) than the average 

(0.778) and the most accurate (0.860) among the 14 readers. GMIC obtains a marginally 

worse performance in the reader study than in the test set because the reader study contains a 

much larger portion of positive samples.

We also assess the efficacy of a human-machine hybrid, whose predictions are simply the 

average of predictions from the radiologists and the model. The human-machine hybrid 

achieves an AUC of 0.883. These results suggest that our model captures different aspects of 

the task compared to radiologists and can be used as a tool to assist in interpreting breast 

cancer screening exams.

3.3 Localization Performance

We select the model with the highest validation F1 for malignancy localization. At the 

inference stage, we upsample SMs using nearest neighbour interpolation to match the 

resolution of the segmentation labels. The average continuous F1/precision/recall on test set 

is 0.207/0.288/0.254 for malignant and 0.133/0.135/0.224 for benign. In addition, the best 

localization model also achieves a classification AUC of 0.886/0.78 for malignant/benign 

classes.

To better understand our model’s behavior, we visualize SMs of three samples selected from 

the test set in Fig. 4. In the first two examples, the SMs are highly activated on the true 

lesions, suggesting that our model is able to detect suspicious lesions without pixel-level 

supervision. Moreover, the attention αk is highly concentrated on ROI patches that overlap 

with the annotated lesions. In the third example, the malignant SM only highlights parts of a 
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large malignant lesion. This behavior is related to the design of fagg: a fixed pooling 

threshold t cannot be optimal for all sizes of ROI. Furthermore, this observation also 

illustrates that while human experts are asked to annotate the entire lesion, CNNs tend to 

emphasize only the most informative part.

4 Conclusion

We present a novel model for breast cancer screening exam classification. The proposed 

method uses the input in its original resolution while being able to focus on fine details. 

Moreover, our model also generates saliency maps that provide additional interpretability. 

Evaluated on a large mammography dataset, GMIC outperforms the ResNet-based baseline 

and generates predictions that are as accurate as radiologists. Given its generic design, the 

proposed model is widely applicable to other image classification tasks. Our future research 

will focus on designing joint training mechanisms that would enable GMIC to improve its 

localization using error signals from the MIL module.
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Fig. 1. 
Overall architecture of GMIC. The input image is annotated with true ROIs (red). The patch 

map indicates positions of ROI patches (blue squares) on the input. (Color figure online)
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Fig. 2. 
Example exam for a patient. Benign findings are highlighted in green. (Color figure online)
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Fig. 3. 
Reader study
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Fig. 4. 
Visualization of three examples. Input images are annotated with segmentation labels 

(green=benign, red=malignant). ROI patches are shown with their attention scores. (Color 

figure online)
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Table 1.

AUCs of the baseline model and a few variations of GMIC

Model Malignant Benign

ResNet-22 [14] 0.827 0.731

GMIC-loc 0.885 0.777

GMIC-mil 0.878 0.766

GMIC-noattn 0.823 0.726

GMIC-random 0.757 0.692

GMIC-loc-random 0.889 0.776
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