Skip to main content

Lesion Detection with Deep Aggregated 3D Contextual Feature and Auxiliary Information

  • Conference paper
  • First Online:
  • 5140 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11861))

Abstract

Detecting different kinds of lesions in computed tomography (CT) scans at the same time is a difficult but important task for a computer-aided diagnosis (CADx) system. Compared to single-lesion detection methods, our lesion detection method considers additional intra-class differences. In this work, we present a CT image analysis framework for lesion detection. Our model is developed based on a dense region-based fully convolutional network (Dense R-FCN) model using 3D context and is equipped with a dense auxiliary loss (DAL) scheme for end-to-end learning. It fuses shallow, medium, and deep features to meet the needs of detecting lesions of various sizes. Owing to its fully-connected structure, it is called Dense R-FCN. Meanwhile, the DAL supervises the intermediate hidden layers in order to maximize the use of the shallow layer information, which benefits the detection results, especially for small lesions. Experiment results on the DeepLesion dataset corroborate the efficacy of our method.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bell, S., Lawrence Zitnick, C., Bala, K., et al.: Inside-outside net: detecting objects in context with skip pooling and recurrent neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2874–2883 (2016)

    Google Scholar 

  2. Chen, T., Li, M., Li, Y., et al.: MXNet: a flexible and efficient machine learning library for heterogeneous distributed systems. arXiv preprint arXiv:1512.01274 (2015)

  3. Dai, J., Li, Y., He, K., et al.: R-FCN: object detection via region-based fully convolutional networks. In: Advances in Neural Information Processing Systems, pp. 379–387 (2016)

    Google Scholar 

  4. Deng, J., Dong, W., Socher, R., et al.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  5. Dou, Q., Chen, H., Jin, Y., Lin, H., Qin, J., Heng, P.-A.: Automated pulmonary nodule detection via 3D convnets with online sample filtering and hybrid-loss residual learning. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 630–638. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_72

    Chapter  Google Scholar 

  6. Kong, T., Yao, A., Chen, Y., et al.: HyperNet: towards accurate region proposal generation and joint object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 845–853 (2016)

    Google Scholar 

  7. Lee, C.Y., Xie, S., Gallagher, P., et al.: Deeply-supervised nets. In: Artificial Intelligence and Statistics, pp. 562–570 (2015)

    Google Scholar 

  8. Ren, S., He, K., Girshick, R., et al.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)

    Google Scholar 

  9. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  10. Yan, K., Bagheri, M., Summers, R.M.: 3D context enhanced region-based convolutional neural network for end-to-end lesion detection. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 511–519. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_58

    Chapter  Google Scholar 

  11. Yan, K., Wang, X., Lu, L., et al.: Deeplesion: automated mining of large-scale lesion annotations and universal lesion detection with deep learning. J. Med. Imaging 5(3), 036501 (2018)

    Article  Google Scholar 

  12. Zhang, R., Zhang, H., Chung, A.C.S.: A unified mammogram analysis method via hybrid deep supervision. In: Stoyanov, D., et al. (eds.) RAMBO/BIA/TIA -2018. LNCS, vol. 11040, pp. 107–115. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00946-5_12

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, H., Chung, A.C.S. (2019). Lesion Detection with Deep Aggregated 3D Contextual Feature and Auxiliary Information. In: Suk, HI., Liu, M., Yan, P., Lian, C. (eds) Machine Learning in Medical Imaging. MLMI 2019. Lecture Notes in Computer Science(), vol 11861. Springer, Cham. https://doi.org/10.1007/978-3-030-32692-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32692-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32691-3

  • Online ISBN: 978-3-030-32692-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics