Skip to main content

Cycle-Consistent Training for Reducing Negative Jacobian Determinant in Deep Registration Networks

  • Conference paper
  • First Online:
Simulation and Synthesis in Medical Imaging (SASHIMI 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11827))

Included in the following conference series:

Abstract

Image registration is a fundamental step in medical image analysis. Ideally, the transformation that registers one image to another should be a diffeomorphism that is both invertible and smooth. Traditional methods like geodesic shooting study the problem via differential geometry, with theoretical guarantees that the resulting transformation will be smooth and invertible. Most previous research using unsupervised deep neural networks for registration address the smoothness issue directly either by using a local smoothness constraint (typically, a spatial variation loss), or by designing network architectures enhancing spatial smoothness. In this paper, we examine this problem from a different angle by investigating possible training mechanisms/tasks that will help the network avoid predicting transformations with negative Jacobians and produce smoother deformations. The proposed cycle consistent idea reduces the number of folding locations in predicted deformations without making changes to the hyperparameters or the architecture used in the existing backbone registration network. Code for the paper is available at https://github.com/dykuang/Medical-image-registration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the paper, it will mainly refer to smoothness, invertibility and particularly, transformations has positive Jacobian determinant everywhere.

  2. 2.

    Each fold will use 2 of the 3 datasets for forming training set and test on the third. Figures 6 and 7 are from the fold when pairs from OAISIS dataset are used as test. This experiment has 1722 training pairs and 380 test pairs.

References

  1. Avants, B.B., Tustison, N.J., Song, G., Cook, P.A., Klein, A., Gee, J.C.: A reproducible evaluation of ants similarity metric performance in brain image registration. Neuroimage 54(3), 2033–2044 (2011)

    Article  Google Scholar 

  2. Balakrishnan, G., Zhao, A., Sabuncu, M.R., Guttag, J., Dalca, A.V.: An unsupervised learning model for deformable medical image registration. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9252–9260 (2018)

    Google Scholar 

  3. Dalca, A.V., Balakrishnan, G., Guttag, J., Sabuncu, M.R.: Unsupervised learning for fast probabilistic diffeomorphic registration. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 729–738. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_82

    Chapter  Google Scholar 

  4. Jaderberg, M., Simonyan, K., Zisserman, A., et al.: Spatial transformer networks. In: Advances in Neural Information Processing Systems, pp. 2017–2025 (2015)

    Google Scholar 

  5. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  6. Klein, A., Tourville, J.: 101 labeled brain images and a consistent human cortical labeling protocol. Front. Neurosci. 6, 171 (2012)

    Article  Google Scholar 

  7. Li, H., Fan, Y.: Non-rigid image registration using fully convolutional networks with deep self-supervision. arXiv preprint arXiv:1709.00799 (2017)

  8. Rohé, M.-M., Datar, M., Heimann, T., Sermesant, M., Pennec, X.: SVF-Net: learning deformable image registration using shape matching. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10433, pp. 266–274. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66182-7_31

    Chapter  Google Scholar 

  9. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  10. Shan, S., et al.: Unsupervised end-to-end learning for deformable medical image registration. arXiv preprint arXiv:1711.08608 (2017)

  11. Sokooti, H., de Vos, B., Berendsen, F., Lelieveldt, B.P.F., Išgum, I., Staring, M.: Nonrigid image registration using multi-scale 3D convolutional neural networks. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10433, pp. 232–239. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66182-7_27

    Chapter  Google Scholar 

  12. Wang, S., Kim, M., Wu, G., Shen, D.: Scalable high performance image registration framework by unsupervised deep feature representations learning. In: Deep Learning for Medical Image Analysis, pp. 245–269. Elsevier (2017)

    Google Scholar 

  13. Yang, X., Kwitt, R., Styner, M., Niethammer, M.: Quicksilver: fast predictive image registration-a deep learning approach. NeuroImage 158, 378–396 (2017)

    Article  Google Scholar 

  14. Yoo, I., Hildebrand, D.G.C., Tobin, W.F., Lee, W.-C.A., Jeong, W.-K.: ssEMnet: serial-section electron microscopy image registration using a spatial transformer network with learned features. In: Cardoso, M.J., et al. (eds.) DLMIA/ML-CDS -2017. LNCS, vol. 10553, pp. 249–257. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67558-9_29

    Chapter  Google Scholar 

  15. Zhang, J.: Inverse-consistent deep networks for unsupervised deformable image registration. arXiv preprint arXiv:1809.03443 (2018)

  16. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. arXiv preprint (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongyang Kuang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kuang, D. (2019). Cycle-Consistent Training for Reducing Negative Jacobian Determinant in Deep Registration Networks. In: Burgos, N., Gooya, A., Svoboda, D. (eds) Simulation and Synthesis in Medical Imaging. SASHIMI 2019. Lecture Notes in Computer Science(), vol 11827. Springer, Cham. https://doi.org/10.1007/978-3-030-32778-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32778-1_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32777-4

  • Online ISBN: 978-3-030-32778-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics