Skip to main content

Evaluation of the Realism of an MRI Simulator for Stroke Lesion Prediction Using Convolutional Neural Network

  • Conference paper
  • First Online:
Simulation and Synthesis in Medical Imaging (SASHIMI 2019)

Abstract

We are focusing on the difficult task of predicting final lesion in stroke, a complex disease that leads to divergent imaging patterns related to the occluded artery level and the geometry of the patient’s vascular tree. We propose a framework in which convolutional neural networks are trained only from synthetic perfusion MRI - obtained from an existing physical simulator - and tested on real patients. We incorporate new levels of realism into this simulator, allowing to simulate the vascular tree of a given patient. We demonstrate that our approach is able to predict the final infarct of the tested patients only from simulated data. Among the various simulated databases generated, we show that simulations taking into account the vascular tree information give the best classification performances on the tested patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Calamante, F., Gadian, D.G., Connelly, A.: Quantification of bolus-tracking MRI: improved characterization of the tissue residue function using Tikhonov regularization. Magn. Reson. Med. 50(6), 1237–1247 (2003)

    Article  Google Scholar 

  2. Calamante, F., Yim, P.J., Cebral, J.R.: Estimation of bolus dispersion effects in perfusion MRI using image-based computational fluid dynamics. Neuroimage 19(2), 341–353 (2003)

    Article  Google Scholar 

  3. Christensen, S., et al.: Inferring origin of vascular supply from tracer arrival timing patterns using bolus tracking MRI. JMRI 27(6), 1371–1381 (2008)

    Article  Google Scholar 

  4. Davis, S., Fisher, M., Warach, S.: Magnetic Resonance Imaging in Stroke. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  5. Frindel, C., Robini, M.C., Rousseau, D.: A 3-D spatio-temporal deconvolution approach for MR perfusion in the brain. Med. Image Anal. 18(1), 144–160 (2014)

    Article  Google Scholar 

  6. Georgiou, L., Wilson, D.J., Sharma, N., Perren, T.J., Buckley, D.L.: A functional form for a representative individual arterial input function measured from a population using high temporal resolution DCE MRI. Magn. Reson. Med. 81(3), 1955–1963 (2019)

    Article  Google Scholar 

  7. Giacalone, M., Frindel, C., Robini, M., Cervenansky, F., Grenier, E., Rousseau, D.: Robustness of spatio-temporal regularization in perfusion MRI deconvolution: an application to acute ischemic stroke. Magn. Reson. Med. 78(5), 1981–1990 (2017)

    Article  Google Scholar 

  8. Giacalone, M., et al.: Local spatio-temporal encoding of raw perfusion MRI for the prediction of final lesion in stroke. Med. Image Anal. 50, 117–126 (2018)

    Article  Google Scholar 

  9. Hermitte, L., et al.: Very low cerebral blood volume predicts parenchymal hematoma in acute ischemic stroke. Stroke 44(8), 2318–2320 (2013)

    Article  Google Scholar 

  10. Iqbal, S.: A comprehensive study of the anatomical variations of the circle of willis in adult human brains. J. Clin. Diagn. Res.: JCDR 7(11), 2423 (2013)

    Google Scholar 

  11. Kellner, E., et al.: Arterial input function measurements for bolus tracking perfusion imaging in the brain. Magn. Reson. Med. 69(3), 771–780 (2013)

    Article  Google Scholar 

  12. Kudo, K., et al.: Accuracy and reliability assessment of CT and MR perfusion analysis software using a digital phantom. Radiology 267(1), 201–211 (2013)

    Article  Google Scholar 

  13. Livne, M., et al.: A PET-guided framework supports a multiple arterial input functions approach in DSC-MRI in acute stroke. JON 27(5), 486–492 (2017)

    Google Scholar 

  14. Madsen, M.T.: A simplified formulation of the gamma variate function. Phys. Med. Biol. 37(7), 1597 (1992)

    Article  Google Scholar 

  15. Mahmood, F., Chen, R., Durr, N.J.: Unsupervised reverse domain adaptation for synthetic medical images via adversarial training. IEEE Trans. Med. Imaging 37(12), 2572–2581 (2018)

    Article  Google Scholar 

  16. Mukherjee, D., Jani, N.D., Narvid, J., Shadden, S.C.: The role of circle of willis anatomy variations in cardio-embolic stroke: a patient-specific simulation based study. Ann. Biomed. Eng. 46(8), 1128–1145 (2018)

    Article  Google Scholar 

  17. Østergaard, L., Weisskoff, R.M., Chesler, D.A., Gyldensted, C., Rosen, B.R.: High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I: mathematical approach and statistical analysis. Magn. Reson. Med. 36(5), 715–725 (1996)

    Article  Google Scholar 

  18. Pinto, A., et al.: Enhancing clinical MRI perfusion maps with data-driven maps of complementary nature for lesion outcome prediction. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11072, pp. 107–115. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00931-1_13

    Chapter  Google Scholar 

  19. Rose, S.E., Janke, A.L., Griffin, M., Finnigan, S., Chalk, J.B.: Improved prediction of final infarct volume using bolus delay-corrected perfusion-weighted MRI: implications for the ischemic penumbra. Stroke 35(11), 2466–2471 (2004)

    Article  Google Scholar 

  20. Shin, H.-C., et al.: Medical image synthesis for data augmentation and anonymization using generative adversarial networks. In: Gooya, A., Goksel, O., Oguz, I., Burgos, N. (eds.) SASHIMI 2018. LNCS, vol. 11037, pp. 1–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00536-8_1

    Chapter  Google Scholar 

  21. Winzeck, S., et al.: ISLES 2016 and 2017-benchmarking ischemic stroke lesion outcome prediction based on multispectral MRI. Front. Neurol. 9, 679 (2018)

    Article  Google Scholar 

  22. Zhong, L., Zhang, J.M., Su, B., Tan, R.S., Allen, J.C., Kassab, G.S.: Application of patient-specific computational fluid dynamics in coronary and intra-cardiac flow simulations: challenges and opportunities. Front. Physiol. 9, 742 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carole Frindel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Debs, N., Decroocq, M., Cho, TH., Rousseau, D., Frindel, C. (2019). Evaluation of the Realism of an MRI Simulator for Stroke Lesion Prediction Using Convolutional Neural Network. In: Burgos, N., Gooya, A., Svoboda, D. (eds) Simulation and Synthesis in Medical Imaging. SASHIMI 2019. Lecture Notes in Computer Science(), vol 11827. Springer, Cham. https://doi.org/10.1007/978-3-030-32778-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32778-1_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32777-4

  • Online ISBN: 978-3-030-32778-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics