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Abstract. Segmenting anatomical structures such as the photoreceptor
layer in retinal optical coherence tomography (OCT) scans is challeng-
ing in pathological scenarios. Supervised deep learning models trained
with standard loss functions are usually able to characterize only the
most common disease appearance from a training set, resulting in sub-
optimal performance and poor generalization when dealing with unseen
lesions. In this paper we propose to overcome this limitation by means
of an augmented target loss function framework. We introduce a novel
amplified-target loss that explicitly penalizes errors within the central
area of the input images, based on the observation that most of the
challenging disease appearance is usually located in this area. We exper-
imentally validated our approach using a data set with OCT scans of
patients with macular diseases. We observe increased performance com-
pared to the models that use only the standard losses. Our proposed loss
function strongly supports the segmentation model to better distinguish
photoreceptors in highly pathological scenarios.

1 Introduction

Supervised deep learning techniques have revolutionized the field of medical
image segmentation [1], particularly with fully convolutional neural network ar-
chitectures such as the U-Net [2]. To learn these networks, a loss function L is
optimized using gradient based approaches and backpropagation. This function
is usually defined in terms of metrics that quantify the discrepancies between a
trustworthy/ground truth labelling and the predicted segmentation.

In this typical framework a loss function is not explicitly tailored to aim for
a specific feature in the target space. Hence, the network firstly learns the domi-
nating characteristics of the target images in the training set, and its remaining
capacity is gradually devoted to characterize other less prevalent target features.
This becomes an issue when dealing with highly pathological data, where lesions
or disease appearance might significantly differ between patients. To overcome
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this limitation, some authors proposed to train segmentation models using a lin-
ear combination of different losses such as cross-entropy and Dice [3]. However,
these metrics are still computed from the same target representation, so they do
not enhance a specific target feature. In this paper we propose to extend this
idea by using the framework of augmented target loss functions, introduced in [4].
Rather than relying on a single or a linear combination of loss functions defined
on the original prediction and target space, Breger et al. [4] proposed to compute
the loss on alternative representations of the predictions and targets, obtained by
applying differentiable transformations T that enhance specific characteristics.

This paper focuses on the application of an augmented target loss function
for photoreceptor layer segmentation in retinal optical coherence tomography
(OCT) scans of patients with macular diseases. OCT is the state-of-the-art tech-
nique for imaging the retina, as it brings volumetric information through a stack
of 2D scans (B-scans) at a micrometric resolution [5]. Ophthalmic disorders such
as diabetic macular edema (DME), retinal vein occlusion (RVO) and age-related
macular degeneration (AMD) gradually affect photoreceptors while progressing.
The abnormal accumulation of fluid due to these diseases significantly alters
the retina, eventually leading to photoreceptor cell death. This last characteris-
tic can be noticed through OCT imaging: first as a pathological thinning of the
photoreceptor layer, and more lately as complete disruptions on it (Fig. 1, right).
It has been observed that these abnormalities are highly correlated with focal
vision impairment [6] and visual acuity loss when located at the central area of
the retina [7]. Hence, the automated characterization of the morphology of the
photoreceptor layer is relevant for efficient quantification of functional loss.

In this paper we build on top of the architectural innovations proposed in [8]
by training such a model using an augmented target loss function. Fitting the
framework we introduce a novel amplified-target loss that induces further penal-
ization to errors within the central area of the B-scans. As the most challenging
pathologies are usually observed at the central area of fovea-centered OCT scans,
our hypothesis is that incorporating this loss function as a kind of regularizer
enforces the network to better characterize disease appearance. We validate our
approach using a series of OCT scans of patients with AMD, DME and RVO.
Our results empirically show that the proposed loss functions improve the perfor-
mance within the central millimeters of the retina compared to using traditional
losses without compromising the performance in the entire volume.

2 Methods

2.1 Augmented target loss functions for image segmentation

In a supervised learning problem we aim to learn a function f with fθ(x) ≈ y,
where θ denotes the free parameters and S = {(x, y)(i)}, 1 < i < N is a given
training set with pairs of inputs x and ground truth labels y. In the context
of image segmentation, x corresponds to an input image, y and ŷ are manual
and predicted segmentations and fθ is some segmentation model (e.g. a fully
convolutional neural network such as the U-Net [2]).
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(a)
(b)

Fig. 1. Left: scanning laser ophthalmoscopy (SLO) of a patient with RVO. The square
indicates the area captured by the OCT volume and the rings represent the central
subfield (CSF) and the 3 and 6 central millimeters (3 CMM and 6 CMM). The blue line
highlights the B-scan showed in the right side. Right: CSF B-scan with photoreceptor
layer annotation (green) with (a) disruptions and (b) abnormal thinning. The red
heat map represents the weighting strategy applied in our loss function. The central
coordinate of the image is indicated with the yellow dotted line, and a profile of the
weighting strategy is illustrated on top of the B-scan.

To adjust the weights θ from the chosen network structure fθ, a loss function
L is minimized using gradient based optimization. L is a piecewise differentiable
loss function, e.g. cross-entropy (CE) or mean squared error (MSE), that mea-
sures the pixel-wise differences between ŷ and y. In standard settings no specific
areas of the images are penalized more than others. Thus, the parameters θ are
mostly adjusted to characterize those features from the training set that have
the most impact on the overall loss. Although this might be helpful to segment
healthy anatomy, in pathological scenarios the network will overfit the prevalent
features unless explicit regularization is imposed during training.

Here, we propose to use the framework of augmented target (AT) loss func-
tions, introduced in [4]. These losses take into account prior knowledge of target
characteristics via error estimation in transformed target spaces. The framework
can be applied to any supervised learning problem based on loss optimization
where additional information about the target data is available, provided it can
be formulated as a transformation function T . The transformation may corre-
spond to any piecewise differentiable function on the target space that yields a
more beneficial representation of some known target characteristic.

Following [4], the AT loss functions LAT is a linear combination of losses
applied to transformed targets. Its general form is:

LAT =

d∑
j=1

λj · Lj
(
{Tj(yi)}i, {Tj(ŷi)}i

)
, (1)
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where λj > 0 corresponds to some weight, Tj to a specific transformation and
Lj to some loss function, for all j ∈ {1, . . . , d}.

Setting typically T1 to the identity and L1 to a standard loss, the additional
terms in the LAT loss act as amplified target information, yielding a new opti-
mization problem:

θ̂ = arg min
θ
{λ1 · L1

(
{yi}i, {ŷi}i

)
+

d∑
j=2

λj · Lj
(
{Tj(yi)}i, {Tj(ŷi)}i

)
, (2)

where the weights λ1 and {λj}dj=2 control the balance between the main loss
and the regularization terms respectively.

2.2 Amplified-target loss functions for photoreceptor layer
segmentation

We experimentally study the AT loss function framework in the context of pho-
toreceptor layer segmentation in pathological OCT scans. We tailor a so called
amplified-target loss in which a transformation T is designed to bring an in-
creased penalty to errors within the central area of the images. This loss is
intended to incorporate the prior knowledge that abnormalities such as patho-
logical thinnings and disruptions of the photoreceptor layer are more common
in the central millimeters of the foveal area. To do so, we define a transforma-
tion T (yi) = W � yi, where � denotes the Hadamard (entrywise) product, yi
corresponds to the given binary targets and W represents a weighting matrix
that encodes a penalization weight for errors. This operation can analogously
be applied to the predictions ŷi. Fig. 1 graphically illustrates the design of the
weighting matrix W . Formally, we define W = Gσ ∗ V , where Gσ stands for a
Gaussian filter with standard deviation σ. We define V as:

Vj,i :=

{
ω for i0 < i < i1 and all j,
1 otherwise,

(3)

where ω denotes the maximum weight assigned to the central area and [i0, i1] is
the horizontal interval of the image that is amplified. The Gaussian filter Gσ is
used to smooth the penalization factor within the edges of the interval.

Following the formulation in (2), we can then redefine our empirical risk
minimization problem as

θ̂ = arg min
θ
{λ1 · L1

(
{yi}i, {ŷi}i

)
+ λ2 · L2

(
{W � yi}i, {W � ŷi}i

)
}, (4)

where we choose λ1, λ2 ∈ R and L1 = L2 as CE or MSE losses.

3 Experimental setup

3.1 Materials

Our method was trained and tested on an in-house data set with 53 Spectralis
OCT volumes of patients suffering from DME (16), RVO (27) and AMD (10).
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Each image comprises 496×512 pixels per B-scan, 49 B-scans per volume. All the
B-scans were manually annotated by certified readers under the supervision of
a retina expert, who modified the labels when necessary to obtain ground truth
segmentations. The set was randomly divided into a training, a validation and a
test set, each of them with 34, 4 and 15 scans, respectively, with approximately
the same distribution of diseases and percentages of disrupted columns per B-
scan (or A-scans).

3.2 Network architecture and training setup

We used the photoreceptor segmentation network described in [8] in our experi-
ments (note that any other architecture could be applied within our framework).
We used as baselines CE and MSE comparing it to the adapted AT loss.

Every configuration was trained at a B-scan level with a batch size of 2 im-
ages, using Adam optimization and early stopping. Hence, training was stopped
if the validation loss did not improve for the last 45 epochs. The learning rate
was set to η = 0.0001, and divided by 2 if the validation loss was not improved
during the last 15 epochs. Data augmentation was used in the form of random
horizontal flippings. Binary segmentations were retrieved as in [8] by threshold-
ing the softmax scores of the photoreceptors class using the Otsu algorithm.

4 Results and Discussion

We evaluated the performance for segmenting the photoreceptor layer using the
volume-wise Dice index, at the CSF, the 3 CMM, the 3-1 ring and the full volume
(Fig. 1, left). All the experiments with our AT loss functions were conducted
using fixed values for σ = 1

16X, i0 = 1
4X and i1 = 3

4X (with X = 512 being
the horizontal size of the B-scans, in pixels), without optimizing them on the
validation set. Different configurations for ω = 2k, k ∈ {1, ..., 5} and λ1 and λ2 ∈
{0.001, 0.01, 0.1, 1, 2, 4, 8 } were analyzed, and the best configuration according
to Dice index on the validation set was then fixed to allow a fair comparison on
the test set. From this model selection step, we observed that ω = 8, λ1 = 1 and
λ2 = 8 reported the best performance for the AT loss with categorical cross-
entropy (CE), and ω = 32, λ1 = λ2 = 1 for the AT loss with mean square error
(MSE).

Fig. 2 depicts boxplots with the quantitative performance of each model on
the test set, compared with their corresponding baselines trained only with CE
and MSE, for each evaluation area. The mean and standard deviation values of
the Dice index are presented in Table 1. The incorporation of the AT loss allows
to perform consistently better in all the cases, with the best results reported
by the MSE loss. Statistical analysis using one-tail Wilcoxon sign-rank tests
at a significance level α = 0.05 showed that the model trained with MSE +
AT loss reported significantly higher Dice values in the CSF area compared to
using CE + AT loss or only MSE (p < 0.0171). These differences were not
statistical significant with respect to the model trained with CE (p = 0.1902).
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(a) Cross entropy (b) MSE

Fig. 2. Volume-wise Dice values for all the evaluated models and our proposed approach
in each evaluation area. Circles indicate mean values. CSF: central subfield (1 central
millimeter). 3 CMM: three central millimeter. 3-1 ring: area between CSF and 3 CMM.

Table 1. Volume-wise mean ± standard deviation Dice values in the test set for each
photoreceptor segmentation model and the different areas.

Method CSF 3 CMM 3-1 ring Full volume

CE loss
0.622

± 0.271
0.691

± 0.242
0.708

± 0.242
0.820

± 0.118

CE + AT loss
(CE, ω = 8, λ1 = 1, λ2 = 8)

0.656
± 0.256

0.718
± 0.218

0.732
± 0.218

0.828
± 0.100

MSE loss
0.560

± 0.303
0.707

± 0.223
0.727

± 0.223
0.835

± 0.096

MSE + AT loss
(MSE, ω = 32, λ1 = λ2 = 1)

0.708
± 0.254

0.749
± 0.215

0.760
± 0.213

0.821
± 0.102

When comparing the Dice values at the 3-1 ring, the MSE with AT loss model
reported statistically significant better results than using only CE or MSE (p <
0.0042), which is consistent with its behavior in the 3 CMM (p < 0.0416).
No statistically significant differences in performance were observed at the full
volume level (two-tails test, p > 0.0730).

We qualitatively analyzed the segmentation and score maps using the CE
and MSE combined with the AT loss. Fig. 3 depicts segmentation results in a
central B-scan from the test set, with score maps represented as heatmaps. Using
MSE produces noisy scores within the lateral areas of the B-scans, and therefore
spurious elements in the segmentation. CE, on the contrary, results in smoother
score maps, although with few false negatives in the vicinity of subretinal fluid.
This behavior is linked to the one observed in Table 1, where the MSE + AT
loss model reported higher Dice in the central area than using CE, and smaller
values in the full volume. The model trained with only MSE performs poorly in
the CSF, the 3 CMM and the 3-1 ring, which indicate that it struggles to deal
with pathologies. Similarly, the high performance at a volume level indicates that
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Fig. 3. Qualitative effect of the loss selection in the pixel score values. From left to
right: manual annotation (green), score map (orange) and binary segmentation (yellow)
obtained with MSE + AT loss (MSE, ω = 32, λ1 = λ2 = 1) and CE + AT loss (CE,
ω = 8, λ1 = 1, λ2 = 8).

it can better characterize normal appearances. When using MSE + AT loss, a
significant reduction in the amount of false negatives occurs at the central areas.
However, as mentioned before, the score maps are noisy at the borders of the
B-scans, which causes a drop in the full volume Dice. The model trained with
CE + AT loss is less accurate at the center than the one trained with MSE +
AT loss, but it still outperforms the baseline approaches. Moreover, at a volume
basis the CE + AT loss remains competitive with respect to the one trained only
with CE loss.

Finally, Fig. 4 presents qualitative results in exemplary central B-scans from
our test set obtained both by the models trained with CE only and with CE
+ AT loss. Our approach produced more anatomically plausible segmentations
than the standard CE loss in pathological areas with subretinal fluid (Fig. 4 (a)
and (b)) or large disruptions (Fig. 4 (c)).

5 Conclusions

In this paper we proposed to use the framework of augmented target loss func-
tions for photoreceptor layer segmentation in pathological OCT scans. We define
an amplified-target loss incorporating a transformation that weights the central
area of the input B-scans to further penalize errors committed in this region.
We experimentally observed that this straightforward approach allows to sig-
nificantly improve performance within the central millimeters of fovea-centered
OCT scans, without affecting the overall performance in the entire volume. These
results indicate that the proposed AT loss function acts as a form of regulariza-
tion, better characterizing photoreceptors appearance within highly pathological
regions. We are currently exploring new alternatives to identify the regions to
weight and to learn their corresponding weights. Further experiments are also
performed to evaluate our approach in the context of other OCT based applica-
tions such as fluid segmentation and using OCT scans from other vendors.
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(a)

(b)

(c)

Fig. 4. Qualitative results in central B-scans from the test set. From left to right:
manual annotations (green), results with only CE loss (blue) and results with CE +
AT loss (CE, ω = 8, λ1 = 1, λ2 = 8).
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