
A Graph Model for Taxi Ride Sharing
Supported by Graph Databases

Dietrich Steinmetz1, Felix Merz1, Hui Ma2, and Sven Hartmann1(B)

1 Clausthal University of Technology, Clausthal-Zellerfeld, Germany
{dietrich.steinmetz,felix.merz,sven.hartmann}@tu-clausthal.de

2 Victoria University of Wellington, Wellington, New Zealand
hui.ma@ecs.vuw.ac.nz

Abstract. The emergence of more complex, data-intensive applications
motivates a high demand of effective data modeling for graph databases
to support efficient query answering. In this paper, we develop an intu-
itive graph data model for dynamic taxi ride sharing. We argue that
our proposed data model meets the data needs imposed by three funda-
mental tasks associated with taxi ride sharing. An experiment consisting
of a taxi ride sharing simulation with real-world data demonstrates the
effectiveness of our modelling approach.

Keywords: Graph database · Data modelling · Ride sharing

1 Introduction

With the increasing number of complex, data-intensive problems emerged, not
only are data sets getting bigger, but also data is getting more and more con-
nected. For example, cyber-traffic analysis is a domain where the size and inter-
connectivity of data is massively increasing due to the still rising usage of the
Internet [6]. A typical example of such complex, data-intensive problems is the
Dynamic Taxi Ridesharing Problem (DTRP) [8]. This problem aims to find taxi
routes and allocate passengers to taxis with the objectives of maximizing the
number of serviced passengers and minimizing the operating cost and passenger
inconvenience [1]. Due to the current rise of companies like Uber and Lyft and
the possible utilization in autonomous driving it is quite popular. The DTRP
is NP-hard [20], so solving it is computationally challenging. This problem also
attracts attention because historic taxi trip records, e.g., from New York City
(NYC) are openly available, which can be used to generate problem instances
for experiments. Besides NYC [8,16,19] data from other cities like Shanghai and
Beijing are frequently used for research [4,5,24].

To efficiently answer queries against large interconnected datasets, data
should be organized carefully so that it does not become a bottleneck for appli-
cations. In particular, we need not only effectively store data but also consider
the relationships among data and how this affects the performance of queries.

c© Springer Nature Switzerland AG 2019
A. H. F. Laender et al. (Eds.): ER 2019, LNCS 11788, pp. 108–116, 2019.
https://doi.org/10.1007/978-3-030-33223-5_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33223-5_10&domain=pdf
https://doi.org/10.1007/978-3-030-33223-5_10


A Graph Model for Taxi Ride Sharing 109

While relational databases are still the most common database technology for
data-intensive storage and retrieval applications, they are not very efficient for
queries of interconnected data due to the expensive joins [10]. To efficiently
answer structural queries for complex, data-intensive problems, graph databases
are a better choice since they provide native support not only for data but also
for relationships between data [18,23]. Graph databases consist of nodes and
relationships where nodes represent objects and relationships represent relations
between objects [17, Sect. 1]. With them the retrieval of related objects or entire
paths is often surprisingly efficient. This makes graph databases attractive for
the DTRP where a lot of path calculations are needed to compute solutions.

For interconnected data there are many ways to store them in a graph
database. To make best use of the capabilities of graph databases, data should
be organized in a way that important queries can be performed efficiently. How-
ever, since the appearance of graph databases in the 1980s there has been far
less research on conceptual modeling for them than for the relational databases
[2]. The intuitive way of data modeling is to identify relevant concepts in the
application domain and to abstract them as nodes and relationships [17, Sect. 3].
The following objectives will be achieved:

– To provide proper support of the fundamental tasks (e.g., finding taxi routes,
allocating travelers to taxis) of the DTRP by a graph database. Based on the
requirements we propose an intuitive model for the graph database.

– To evaluate our modeling approach we conduct a theoretical analysis of the
data needs of the DTRP that are met by our proposed graph model as well
as an experiment that explores the travel request satisfaction rate for differ-
ent numbers of taxis. For that we model real-world datasets of the DTRP
according to our proposed approach and store them in a graph database. For
our prototype implementation, we use Neo4j to store and retrieve the data
of the DTRP since it is currently the most popular graph database system
[18,21], and road network data can be easily imported from Open Street Map
(OSM) [22].

Organization. This paper is organized as follows. In Sect. 2 we briefly discuss
related work and outline the DTRP and its subproblems (allocating travelers to
taxis, sequencing the taxi schedule) to understand the requirements. In Sect. 3
we propose an intuitive graph model for the DTRP. In Sect. 4 we report on
the experiment that we have conducted. In Sect. 5 we give conclusions and an
outlook on future work.

2 Background

2.1 Data Modeling for Graph Databases

A graph model is a data model for graph databases and refers here to the
labeled property graph model presented in [17, Sect. 3]. Data modeling for graph



110 D. Steinmetz et al.

databases has not been researched as thoroughly as for relational databases. Pri-
marily an intuitive modeling approach is chosen, because the data often already
exists in a graph-like structure in cases where a graph database is used. Neo4j
lists multiple examples in their GraphGists list [12]. Some more sophisticated
examples for the most common use cases of Neo4j are given at [11]. Intuitive
graph modeling is also used in the literature in areas like cyber-traffic analysis
[6], healthcare [14] and biology [3,7].

2.2 Traveler-Taxi Allocation and Taxi Schedule Sequencing

Our work is motivated by the DTRP, cf. [8,9,20]. In this problem, a set of taxis is
running in a road network to serve customers, that is, to pick them up from their
location and to drop them off at another location. Customers can share a taxi to
save costs. Taxis have a limited seat capacity. To a certain extend taxis can make
detours but taxi drivers need to account for the interests of other passengers.
The objective of the DTRP is to achieve a high travel request satisfaction rate
while minimizing the total travel distance (or cost) of taxis. The DTRP is an
online problem since travel requests are coming on the fly and taxis need to be
scheduled in real-time. The information on travel requests is unknown until the
request is received.

NP-hard problems like the DTRP are particularly challenging, since problems
in this class are suspected to have no polynomial-time algorithms. Therefore,
heuristics are widely used to ensure scalability. The DTRP is a scheduling prob-
lem where taxis are resources and travel requests are tasks. Scheduling problems
are very popular in many application domains, and often tackled by decomposing
them into an allocation problem and a sequencing problem [15, Chap. 1].

Therefore, the DTRP is often treated as a composition of two subproblems:
the traveler-taxi allocation problem and the taxi schedule sequencing problem.
When a travel request is received, the goal is to allocate it to a taxi that is close
enough to pick up the traveler while satisfying the constraints of the request as
well as the constraints due to the seat capacity of the taxi and the requirements
of other travelers who are already on board of the taxi. Once a taxi has a
new request allocated to it, the schedule of this taxi has to be reorganized to
account for the potential detour and waiting time. Traveler-taxi allocation and
taxi schedule sequencing are not independent subproblems, since finding the best
candidate taxi for a request depends on how that request affects the taxi route.

2.3 Requirements for Our Graph Model

To solve the DTRP efficiently, we aim to design a graph model for it. A review
of the state-of-the-art literature on the DTRP resulted in the following set of
important tasks that should be supported by our graph model, cf. [8,9,20]:

Task 1 Retrieve the minimum travel time between the pickup and dropoff location
for a specified travel request.



A Graph Model for Taxi Ride Sharing 111

Task 2 Retrieve suitable taxis that can reach the pickup location of a request in
a specified timeframe.

Task 3 Retrieve the remaining capacity and the remaining slack time at a spec-
ified point in the taxi schedule.

These tasks are fundamental for the traveler-taxi allocation and the taxi
schedule sequencing. The minimum travel time of a request is the basis of cal-
culation of the maximum detour time for this request. Moreover, based on the
time of a request, the minimum travel time and the maximum detour time it is
possible to compute the latest arrival time of a request. This is crucial in order to
decide for a candidate taxi whether it can arrive in time at the pickup location
of a travel request. Finding suitable taxis for a request is the central aim for
the traveler-taxi allocation. The maximum slack time of involved trips and the
remaining capacity of a taxi are used when checking if a request can be inserted
into a taxi schedule. Among the candidate taxis the best one will be selected,
i.e., the one that causes the least increase of the overall travel distance or cost.

3 An Intuitive Graph Model for the DTRP

Based on the requirements discussed above we will now design a graph model
for the DTRP that can meet the data needs of the three important tasks.

For the DTRP the following real-world entities are relevant: travel requests,
taxis and a road network. We regard a road network as a directed graph
G = (V,E) where V is a set of road points and E a set of road segments. The
road points are used to model intersections, terminal nodes and other points of
interest, in particular potential pickup and dropoff locations of passengers. The
road segments are used to model roads or part of roads. In our graph model,
road points v ∈ V are represented by nodes with label RoadPoint. For each
road point we store the properties latitude and longitude. Road segments e ∈ E
are represented by relationships with type road segment between road points.
For each road segment we store the property travel time.

Travel requests r ∈ R are represented as nodes with label TravelRequest.
Requests come from potential passengers with a desired pickup and dropoff
location. For each request we store the properties datetime, passenger count and
maximum slack time. Furthermore, each request is linked to two road points
through two relationships with types is picked up at and is dropped off at
for the pickup and dropoff location, respectively.

Taxis h ∈ T are represented by nodes with the label TaxiShift. We regard a
taxi as a shift of a taxi driver.1 For each taxi we store the properties passenger
capacity, shift start and shift end. We model the schedule of a taxi h as a set
Sh of taxi states. Taxi states σh ∈ Sh are represented by nodes with label
TaxiState. Each taxi state is linked to a road point through a relationship with
type is located at. The next taxi state nextSh

(σh) ∈ Sh and the previous
taxi state prevSh

(σh) ∈ Sh are linked through relationships with type is before.

1 For simplicity, we assume in this work that each taxi has just one taxi shift.



112 D. Steinmetz et al.

Furthermore, there are relationships with type is scheduled by between a taxi
shift h and each of its taxi states σh ∈ Sh.

We regard a taxi state σh as a stay of taxi h at the road point vσh
. For each

taxi state we store the properties number of passengers nσh
, period start ts,σh

and period end te,σh
. They need to satisfy the constraint that the period end of

a taxi state differs from the period start of the next taxi state by the travel time
between their respective road points. Furthermore, for every taxi state we store
a property sσh

whether a pickup or dropoff is happening. A taxi stop is a taxi
state with a pickup or dropoff of some passenger. This causes a certain delay of
γ called the change time.2 Taxi stops have higher priority than other taxi states
since they have to be passed while other taxi states connecting the stops can be
replaced by different routes. To optionally skip the states there is an additional
relationship with type is before stop at each stop connecting it to the next
stop nexts,Sh

(σh) and previous stop prevs,Sh
(σh) if existent.

Trips are represented by nodes with label Trip. For each trip we store the
property remaining slack time. Once a request is accepted, it results in a trip of
the traveler. Each trip is linked to a request through a relationship with type
is initialized by. We regard the trip schedule as a subset of the schedule of
its assigned taxi. Hence, there are relationships with type is scheduled by
between a trip and each taxi state that it shares with its assigned taxi.

After the definition of the nodes and relationships we can now assemble them
in our intuitive graph model for the DTRP shown in Fig. 1.3

Proposition 1. Using our intuitive graph model in Fig. 1, it is possible to meet
all data needs of Tasks 1, 2 and 3

Sketch of Proof. We will demonstrate that based on our intuitive graph model
it is possible to solve the three important tasks.

For Task 1 we want to retrieve minimum travel time between the pickup and
dropoff location of a request. To compute the minimum travel time between two
road points v1, v2 ∈ V we find the path P with the lowest total travel time ω(P )
in the road network. We refer to this path P as the shortest path4 p(v1, v2). It can
be computed using a shortest path algorithm like Dijkstra’s or the A∗-heuristic.

For Task 2 we want to retrieve suitable taxis that are close to the pickup
location of a request. We can use Dijkstra’s algorithm with a maximum path
weight to find the schedule states close to the pickup location of the request.

For Task 3 we want to retrieve the remaining capacity and the remaining
slack time of a taxi in a given taxi state. The remaining seat capacity for a taxi
2 This change time is not considered in some publications on the DTRP even though it

has severe implications on ride sharing efficiency, since picking up passengers causes
a schedule delay even if the pickup location is on the taxi route.

3 For a better overview, we show the graph model with its nodes and relationships,
but do not visualize the properties stored for nodes and relationships.

4 In the literature this term is often used based on travel distance. Road segments,
however, can have different travel speeds which leads to the invalidity of the trian-
gle inequality on the road network. The path with the lowest total travel distance
between two locations might not necessarily be the shortest path between them.



A Graph Model for Taxi Ride Sharing 113

Travel
Request

Trip

Road
Point

Taxi
State

Taxi
Shift

is initialized by

is picked up at

is dropped off at

road segment

is located at

is scheduled by

is scheduled by

is before

is before stop

Fig. 1. Our intuitive graph model for the DTRP.

state can be computed from the total capacity (stored as a property of the taxi
node) and the current passenger number (stored as an aggregated property of the
taxi state node). The remaining slack time can be computed by inspecting the
current taxi state and all future taxi stops, and finding the minimal value of the
remaining slack times of the trips connected to them (stored as an aggregated
property of the trip node).

4 Experimental Evaluation

To evaluate our modeling approach we have implemented our proposed graph
model using Neo4j. In addition, we adapted the taxi ride sharing algorithms
from [8,9,20] and implemented them as a plugin for Neo4j. Our experiment
was based on real-world data of NYC utilizing OSM data and historic taxi trip
data from NYC [13]. The imported road network consisted of 605,828 road points
and 694,102 road segments, increasing to 927,621 road points and 1,931,503 road
segments after data preprocessing, which included data cleaning and integration.

For our experiment we used data for the week from January 4 to 10, 2016
involving 319,081 travel requests after preprocessing 328,643 taxi trips. After
the experiment the results were verified against our proposed graph model and
the time and seat capacity constraints, to check for the correctness of the imple-
mented algorithms.

Figure 2 shows the satisfaction rate of travel requests given by the number of
trips that are shared or completed without sharing and the travel requests that
are rejected on January 4, 2016 for 250, 500 and 1000 taxis. We observe that
significantly less travel requests can be handled when using 250 taxis compared
to 500 taxis, while 1000 taxis yield no significant improvement compared to 500
taxis.



114 D. Steinmetz et al.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 230

2,0
00

4,0
00

Hour of day

N
um

be
r
of

re
qu

es
ts

250 taxisshared trips
solo trips
rejected requests

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 230

2,0
00

4,0
00

Hour of day

N
um

be
r
of

re
qu

es
ts

500 taxisshared trips
solo trips
rejected requests

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 230

2,0
00

4,0
00

Hour of day

N
um

be
r
of

re
qu

es
ts

1000 taxisshared trips
solo trips
rejected requests

Fig. 2. Plots of the cumulative number of shared trips, solo trips and rejected requests
for January 4, 2016 with 250, 500 and 1000 taxis, respectively.

5 Conclusion and Future Work

In this paper, we have proposed a labeled graph property model for the DTRP.
Based on a review of state-of-the-art solutions for the DTRP we identified funda-
mental tasks for solving the problem and developed an intuitive graph model for
the DTRP. We then verified that our proposed graph model has the capability
to satisfy the requirements imposed by the fundamental tasks. In addition, we
provided a prototype impelmentation of our graph data model and the respec-
tive taxi ride sharing algorithms, which we then utilised for a taxi ride sharing
simulation with real-world data.



A Graph Model for Taxi Ride Sharing 115

For the future, we plan to conduct further experiments to explore the per-
formance and scalability of our approach. Moreover, we will investigate possible
design alternatives for our intuitive graph model in order to further improve the
support provided by the graph database backend for dynamic taxi ride sharing.

References

1. Agatz, N., Erera, A., Savelsbergh, M., Wang, X.: Optimization for dynamic ride-
sharing: a review. Eur. J. Oper. Res. 223, 295–303 (2012)

2. Angles, R., Gutierrez, C.: Survey of graph database models. ACM Comp. Surv.
40, 1 (2008)

3. Graves, M., Bergeman, E.R., Lawrence, C.B.: Graph database systems. IEEE Eng.
Med. Biol. Mag. 14, 737–745 (1995)

4. Hou, Y., et al.: Towards efficient vacant taxis cruising guidance. In: IEEE GLOBE-
COM, pp. 54–59 (2013)

5. Huang, Y., Bastani, F., Jin, R., Wang, X.S.: Large scale real-time ridesharing with
service guarantee on road networks. PVLDB 7(14), 2017–2028 (2014)

6. Joslyn, C., Choudhury, S., Haglin, D., Howe, B., Nickless, B., Olsen, B.: Massive
scale cyber traffic analysis: a driver for graph database research. In: International
Workshop Graph Data Management Experiences and Systems, p. 3. ACM (2013)

7. Lysenko, A., Roznovăţ, I.A., Saqi, M., Mazein, A., Rawlings, C.J., Auffray, C.:
Representing and querying disease networks using graph databases. BioData Min.
9(1), 23 (2016)

8. Ma, S., Zheng, Y., Wolfson, O.: T-share: a large-scale dynamic taxi ridesharing
service. In: IEEE ICDE, pp. 410–421 (2013)

9. Ma, S., Zheng, Y., Wolfson, O., et al.: Real-time city-scale taxi ridesharing. TKDE
27, 1782–1795 (2015)

10. Mishra, P., Eich, M.H.: Join processing in relational databases. ACM Comp. Surv.
24, 63–113 (1992)

11. Neo4j: Graph database use cases. https://neo4j.com/use-cases/
12. Neo4j: Neo4j GraphGists. https://neo4j.com/graphgists/
13. NYC Taxi & limousine commission: trip record data. http://www.nyc.gov/html/

tlc/html/about/triprecorddata.shtml
14. Park, Y., Shankar, M., Park, B.H., Ghosh, J.: Graph databases for large-scale

healthcare systems. In: IEEE ICDE Workshops, pp. 12–19 (2014)
15. Pinedo, M.L.: Scheduling: Theory, Algorithms, and Systems. Springer, Heidelberg

(2016)
16. Qian, X., Zhang, W., Ukkusuri, S.V., Yang, C.: Optimal assignment and incentive

design in the taxi group ride problem. Trans. Res. B: Meth. 103, 208–226 (2017)
17. Robinson, I., Webber, J., Eifrem, E.: Graph Databases. O’Reilly, Sebastopol (2013)
18. Sahu, S., Mhedhbi, A., Salihoglu, S., Lin, J., Özsu, M.T.: The ubiquity of large

graphs and surprising challenges of graph processing. PVLDB 11, 420–431 (2017)
19. Santi, P., Resta, G., Szell, M., Sobolevsky, S., Strogatz, S.H., Ratti, C.: Quantifying

the benefits of vehicle pooling with shareability networks. Proc. Nat. Acad. Sci.
111, 13290–13294 (2014)

20. Santos, D.O., Xavier, E.C.: Dynamic taxi and ridesharing: A framework and heuris-
tics for the optimization problem. In: IJCAI, vol. 13, pp. 2885–2891 (2013)

21. solidIT: DB-engines ranking - popularity ranking of graph DBMS. https://db-
engines.com/en/ranking/graph+dbms

https://neo4j.com/use-cases/
https://neo4j.com/graphgists/
http://www.nyc.gov/html/tlc/html/about/triprecorddata.shtml
http://www.nyc.gov/html/tlc/html/about/triprecorddata.shtml
https://db-engines.com/en/ranking/graph+dbms
https://db-engines.com/en/ranking/graph+dbms


116 D. Steinmetz et al.

22. Steinmetz, D., Dyballa, D., Ma, H., Hartmann, S.: Using a conceptual model to
transform road networks from OpenStreetMap to a graph database. In: Trujillo,
J.C., et al. (eds.) ER 2018. LNCS, vol. 11157, pp. 301–315. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-00847-5 22

23. Vicknair, C., Macias, M., Zhao, Z., Nan, X., Chen, Y., Wilkins, D.: A comparison
of a graph database and a relational database: a data provenance perspective. In:
ACM Southeast Conference, p. 42 (2010)

24. Yuan, N.J., Zheng, Y., Zhang, L., Xie, X.: T-Finder: a recommender system for
finding passengers and vacant taxis. IEEE TKDE 25, 2390–2403 (2013)

https://doi.org/10.1007/978-3-030-00847-5_22

	A Graph Model for Taxi Ride Sharing Supported by Graph Databases
	1 Introduction
	2 Background
	2.1 Data Modeling for Graph Databases
	2.2 Traveler-Taxi Allocation and Taxi Schedule Sequencing
	2.3 Requirements for Our Graph Model

	3 An Intuitive Graph Model for the DTRP
	4 Experimental Evaluation
	5 Conclusion and Future Work
	References




