Skip to main content

A Pulmonary Nodule Detection Method Based on Residual Learning and Dense Connection

  • Conference paper
  • First Online:
Domain Adaptation and Representation Transfer and Medical Image Learning with Less Labels and Imperfect Data (DART 2019, MIL3ID 2019)

Abstract

Pulmonary nodule detection using chest CT scan is an essential but challenging step towards the early diagnosis of lung cancer. Although a number of deep learning-based methods have been published in the literature, these methods still suffer from less accuracy. In this paper, we propose a novel pulmonary module detection method, which uses a 3D residual U-Net (3D RU-Net) for nodule candidate detection and a 3D densely connected CNN (3D DC-Net) for false positive reduction. 3D RU-Net contains residual blocks in both contracting and expansive paths, and 3D DC-Net leverages three dense blocks to facilitate gradients flow. We evaluated our method on the benchmark LUng Nodule Analysis 2016 (LUNA16) dataset and achieved a CPM score of 0.941, which is higher than those achieved by five competing methods. Our results suggest that the proposed method can effectively detect pulmonary nodules on chest CT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R.L., Torre, L.A., Jemal, A.: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68(6), 394–424 (2018)

    Article  Google Scholar 

  2. Baldwin, D.R.: Prediction of risk of lung cancer in populations and in pulmonary nodules: significant progress to drive changes in paradigms. Lung Cancer 89(1), 1–3 (2015)

    Article  Google Scholar 

  3. Ding, J., Li, A., Hu, Z., Wang, L.: Accurate pulmonary nodule detection in computed tomography images using deep convolutional neural networks. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 559–567. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_64

    Chapter  Google Scholar 

  4. Hamidian, S., Sahiner, B., Petrick, N., Pezeshk, A.: 3D convolutional neural network for automatic detection of lung nodules in chest CT. In: Medical Imaging 2017: Computer-Aided Diagnosis, vol. 10134, p. 1013409. International Society for Optics and Photonics (2017)

    Google Scholar 

  5. Dou, Q., Chen, H., Jin, Y., Lin, H., Qin, J., Heng, P.-A.: Automated pulmonary nodule detection via 3D convnets with online sample filtering and hybrid-loss residual learning. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 630–638. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_72

    Chapter  Google Scholar 

  6. Wang, B., Qi, G., Tang, S., Zhang, L., Deng, L., Zhang, Y.: Automated pulmonary nodule detection: high sensitivity with few candidates. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 759–767. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_84

    Chapter  Google Scholar 

  7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  8. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)

    Google Scholar 

  9. Setio, A.A.A., et al.: Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: the LUNA16 challenge. Med. Image Anal. 42, 1–13 (2017)

    Article  Google Scholar 

  10. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  11. Khosravan, N., Bagci, U.: S4ND: single-shot single-scale lung nodule detection. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 794–802. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_88

    Chapter  Google Scholar 

  12. Cao, H., et al.: Two-stage convolutional neural network architecture for lung nodule detection. arXiv preprint arXiv:1905.03445 (2019)

Download references

Acknowledgement

This work was supported in part by the Science and Technology Innovation Committee of Shenzhen Municipality, China, under Grants JCYJ20180306171334997, in part by the National Natural Science Foundation of China under Grants 61771397, in part by Synergy Innovation Foundation of the University and Enterprise for Graduate Students in Northwestern Polytechnical University (NPU) under Grants XQ201911, in part by the Seed Foundation of Innovation and Creation for Graduate Students in NPU under Grants ZZ2019029, and in part by the Project for Graduate Innovation team of NPU. We appreciate the efforts devoted by LUNA16 challenge organizers to collect and share the data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Xia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, F., Xie, Y., Xia, Y., Zhang, Y. (2019). A Pulmonary Nodule Detection Method Based on Residual Learning and Dense Connection. In: Wang, Q., et al. Domain Adaptation and Representation Transfer and Medical Image Learning with Less Labels and Imperfect Data. DART MIL3ID 2019 2019. Lecture Notes in Computer Science(), vol 11795. Springer, Cham. https://doi.org/10.1007/978-3-030-33391-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33391-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33390-4

  • Online ISBN: 978-3-030-33391-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics