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Abstract. We consider a Min-Power Bounded-Hops Symmetric Con-
nectivity problem that consists in the construction of communication
spanning tree on a given graph, where the total energy consumption
spent for the data transmission is minimized and the maximum num-
ber of hops between two nodes is bounded by some predefined constant.
We focus on the planar Euclidian case of this problem where the nodes
are placed at the random uniformly spread points on a square and the
power cost necessary for the communication between two network ele-
ments is proportional to the squared distance between them. Since this
is an NP-hard problem, we propose different polynomial heuristic algo-
rithms for the approximation solution to this problem. We perform a
posteriori comparative analysis of the proposed algorithms and present
the obtained results in this paper.

Keywords: Energy efficiency · Approximation algorithms · Symmetric
connectivity · Bounded hops.

1 Introduction

Due to the prevalence of wireless sensor networks (WSNs) in human life, the
different optimization problems aimed to increase their efficiency remain actual.
Since usually WSN consists of elements with the non-renewable power supply
with restricted capacity, one of the most important issues related to the de-
sign of WSN is prolongation its lifetime by minimizing energy consumption of
its elements per time unit. A significant part of sensor energy is spent on the
communication with other network elements. Therefore, the modern sensors of-
ten have an ability to adjust their transmission ranges changing the transmitter
power. Herewith, usually, the energy consumption of a network’s element is as-
sumed to be proportional to ds, where s ≥ 2 and d is the transmission range
[1].

The problem of search of the optimal power assignment in WSN is well-
studied. The most general Range Assignment Problem, where the goal is to
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find a strongly connected subgraph in a given oriented graph, has been consid-
ered in [2,3]. Its subproblem, Minimum Power Symmetric Connectivity Problem
(MPSCP), was first studied in [4]. The authors proved that Minimum Span-
ning Tree (MST) is 2-approximation solution to this problem. Also, they pro-
posed a polynomial-time approximation scheme with a performance ratio of
1+ln 2+ε ≈ 1.69 and 15/8-approximation polynomial algorithm. In [5] a greedy
heuristic, later called Incremental Power: Prim (IPP), was proposed. IPP is sim-
ilar to the Prim’s algorithm of the finding of MST. A Kruscal-like heuristic,
later called Incremental Power: Kruscal, was studied in [6]. Both of these so-
called incremental power heuristics have been proposed for the Minimum Power
Asymmetric Broadcast Problem, but they are suitable for MPSCP too. It is
proved in [7] that they both have an approximation ratio 2, and it was shown in
the same paper that in practice they yield significantly more accurate solution
than MST. Also, in a series of papers different heuristic algorithms have been
proposed for MPSCP and the experimental studies have been done: local search
procedures [7,8,9], methods based on iterative local search [10], hybrid genetic
algorithm that uses a variable neighborhood descent as mutation [11], variable
neighborhood search [12], and variable neighborhood decomposition search [13].

Another important property of WSN’s efficiency is message transmission de-
lay, i.e., the minimum time necessary for transmitting a message from one sensor
to another via the intermediate transit nodes. As a rule, the data transmission
delay is proportional to the maximum number of hops between two nodes of
a network. The general case, when the network is represented as directed arc-
weighted graph, and the goal is to find a strongly connected subgraph with
minimum total power consumptions and bounded path length, is called Min-
Power Bounded-Hops Strong Connectivity Problem. In [3] a special Euclidian
case of this problem, when equidistant on the line, was considered. In [14] the
approximation algorithms with guaranteed estimates have been proposed for
the Euclidean case of this problem. The bi-criteria approximation algorithm for
the general case (not necessarily Euclidian) with guaranteed upper bounds has
been proposed in [15]. The authors of [16] propose improved constant factor
approximation for the planar Euclidian case of the problem.

In this paper, we consider the symmetric case of Min-Power Bounded-Hops
Strong Connectivity Problem, when the network is represented as undirected
edge-weighted graph. Such a problem is known as Min-Power Bounded-Hops
Symmetric Connectivity Problem (MPBHSCP) [15]. We also assume that sensors
are positioned on Euclidian two-dimensional space. Energy consumption for the
data transmission is assumed to be proportional to the area of a circle with center
in sensor position and radius equal to its transmission range d, and, therefore,
s is considered to be equal 2. This problem is still NP-hard in two-dimensional
Euclidian case [17], and, therefore, the approximation heuristic algorithms that
allow obtaining the near-optimal solution in a short time, are required for it.

Although MPBHSCP is known to be NP-hard, to the best of our knowledge,
none research has been done to find the most efficient in practice approximation
algorithms. This paper is aimed to fill this gap. We propose six different con-
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structive heuristics for the approximation solution of MPBHSCP. We employ the
ideas of the most natural and widely spread heuristics for the Bounded-Diameter
Minimum Spanning Tree (BDMST). We conducted an extensive numerical ex-
periment where these algorithms have been compared. We present the results of
the experiment in this paper.

The rest of the paper is organized as follows. In Section 2 the problem is for-
mulated, in Section 3 descriptions of the proposed algorithms are given, Section
4 contains results and analysis of an experimental study, and Section 5 concludes
the paper.

2 Problem formulation

Mathematically, MPBHSCP can be formulated as follows. Given a connected
edge-weighted undirected graph G = (V,E) and an integer value D ≥ 1, find
such spanning tree T ∗ of G, which is the solution to the following problem:

W (T ) =
∑

i∈V

max
j∈Vi(T )

cij → min
T

,

distT (u, v) ≤ D ∀u, v ∈ V,

where Vi(T ) is the set of vertices adjacent to the vertex i in the tree T , cij ≥ 0
is the weight of the edge (i, j) ∈ E and distT (u, v) is the number of edges in a
path between the vertices u ∈ V and v ∈ V in T .

Obviously, in general case, MPBHSCP may even not have any feasible solu-
tion. In this paper, we consider a planar Euclidian case, where an edge weight
equals the squared distance between the corresponding points and G is a com-
plete graph. Also, we assume that the sensors are randomly uniformly distributed
on a square with fixed side. Therefore, for example, the density of a network
grows with increase of the number of its elements.

3 Heuristic algorithms

We propose a set of heuristic algorithms that construct an approximate solution
to the MPBHSCP. Many of them use ideas that previously have been applied
to the solution of Bounded-Hops Minimum Spanning Tree (BDMST). As well
as it is done in many efficient heuristic algorithms for BDMST, we will use a
center-based approach, where, at first, the center (one vertex if D is even or two
vertices if it is odd) is chosen, and after that, the tree is constructed taking care
of the depth of each vertex in relation to the center. The main difference between
the algorithms applied for BDMST and our methods is the calculation of the
objective function increment after the small modifications of a partial solution.
An objective function of MST is additive, that is, adding (or removing) an edge
will increase (or decrease) the objective value exactly by the weight of an edge,
which is not held for the objective function of MPSCP: if one wants to calculate
the change of an objective function value for MPSCP after adding or removing
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an edge, then he has to take into account the weights of all adjacent edges of a
tree.

Let us define the notations that will be used further. For the convenience
purposes, we will construct a directed tree, rooted in a center. If the center
contains two vertices then one of them will be referred to as a root, and the
second one — as its child. Let’s call the minimum number of edges between a
vertex and center in a tree as the depth of a vertex. Let VT ⊂ V stand for a set of
vertices in a tree T , ET stand for a set of edges of T . Let ParentT (v) ∈ VT be a
parent of a vertex v ∈ VT . If v /∈ VT then let ParentT (v) = ∅. Let depthT (v) be
the depth of a vertex v in a tree T in relation to the center, that is the minimum
number of hops (edges) between v and center. If v /∈ VT then let depthT (v) be
equal to −1. Let Power(v, u) = Power(u, v) be the power cost necessary for the
direct communication between the vertices u and v. As it was mentioned before,
in this paper, we assume that Power(u, v) = (posu−posv)

2, where posu and posv
are positions in Euclidian two-dimensional space of, correspondingly, the vertices
u and v. Of course, these values may be calculated once since the positions are
fixed. PowerT (u) will stand for the power consumptions of a vertex v in a tree
T . NT (v) ⊂ VT {v} will stand for a set of neighbors of v ∈ VT in T . That is,
PowerT (v) =

∑
u∈NT (v) Power(u, v), and the total power consumption of a tree

T , which is the objective function value, is W (T ) =
∑

v ∈ VTPowerT (v).

3.1 Prim-Like Heuristics

Many of known greedy approaches for BDMST use the Prim’s strategy [18] for
tree building. Starting from a tree with the only vertex, these algorithms re-
peatedly add a new edge that connects a non-tree vertex with a vertex in a
tree and does not violate the restriction on the diameter. Herewith, criteria of
choosing the new non-tree vertex may vary while the in-tree vertex is always
chosen greedily. A way of choosing the center vertices, which is rather essen-
tial, may vary too. The general scheme of the Prim-Like Heuristic (PLH) is
presented in Algorithm 1. Below we will consider three different heuristics that
are based on the Prim’s strategy: Min-Power Center-Based Tree Construction,
Min-Power Randomized Tree Construction, and Min-Power Center-Based Least
Sum-of-Costs. The difference between these algorithms lies in the different im-
plementations of the methods ChooseF irstCenters, ChooseSecondCenter, and
ChooseEachV ertex.

Min-Power Center-Based Tree Construction. The first algorithm based
on PLH is Min-Power Center-Based Tree Construction (MPCBTC) which is sim-
ilar to the Center-Based Tree Construction [19] for BDMST. In this algorithm,
ChooseF irstCenters chooses each vertex, that is, the algorithm starts n times
with each vertex of V selected as a center. The method ChooseSecondCenter(v0)
returns the vertex v1 = argminv∈V \{v0}PowerT (v, v0). And, finally, the method
ChooseEachV ertex(U, V0, wBestNeighbor) finds such vertex u ∈ U that wBestNeighbor(u)
is minimum. CBTC is known to perform worse with decrease of maximum hops
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Algorithm 1 Prim-Like Heuristic

C[.]← ChooseF irstCenters();
W ∗ ←∞;
for all v0 ∈ C[.] do

V0 ← {v0};
U ← V \ {v0};
depthT [.] ← an array of size n that stores a depth for each vertex in a tree, filled

with -1;
bestNeighbor[.]← an array that stores the best neighbor in V0 for each vertex in

U ;
wBestNeighbor[.] ← an array that stores the total power increase if the vertex

will be connected with its best neighbor;
depth(v0)← 0;
T ← (v0, ∅);
if D is odd then

v1 ← ChooseSecondCenter(v0);
depthT (v1)← 0;
Add a vertex v1 and an edge (v0, v1) to T ;

end if

V0 ← VT ;
for all u ∈ U do

bestNeighbor(u)← argminv∈VT
{Power(u, v)};

wBestNeighbor(u)← Power(u, bestNeighbor(u));
end for

while U is not empty do

u← ChooseEachV ertex(U,V0, wBestNeighbor);
Add a vertex u and an edge (u, bestNeighbor(u)) to T ;
depthT (u)← depthT (bestNeighbor(u) + 1);
PowerT (u)← Power(u, bestNeighbor(u));
PowerT (bestNeighbor(u))← max{PowerT (bestNeighbor(u)), P ower(u, bestNeighbor(u))};
U ← U \ {u};
for all v ∈ U do

w ← Power(bestNeighbor(u), v) + max{0, P ower(bestNeighbor(u), v) −
PowerT (v)};

if w < wBestNeighbor(v) then
wBestNeighbor(v)← w;
bestNeighbor(v)← bestNeighbor(u);

end if

end for

if depthT (u) < ⌊D/2⌋ then
V0 ← V0 ∪ {u};
for all v ∈ U do

w← Power(u, v) + max{0, P ower(u, v)− PowerT (v)};
if w < wBestNeighbor(v) then

wBestNeighbor(v)← w;
bestNeighbor(v)← u;

end if

end for

end if

end while

if W (T ) < W ∗ then

W ∗ ←W (T );
T ∗ ← T ;

end if

end for

return T ∗;
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number and increase of the points density, since the nodes that lie far from a
center (let’s call them far nodes) often have the maximum allowable depth and,
therefore, once added, they cannot be connected with any other node. And, for
this reason, far nodes cannot be connected with any node in their proximity
without violating the hops restriction, and they are forced to be connected with
a tree by long arcs. Obviously, in MPCBTC, as well as in CBTC, the closest
to the center nodes are added sooner, and in a case of large density and small
D MPCBTC will have the same disadvantage as CBTC: far nodes will be con-
nected with a tree via long edges. Due to this fact solution obtained by MPCBTC
should appear extremely inefficient for the cases when n is large and D is small.
The computational complexity of MPCBTC is O(n3) since it is repeated n times
for each vertex chosen as the center, and each iteration requires O(n2) time.

Min-Power Randomized Tree Construction. One simple approach aimed
to overcome the mentioned disadvantage of CBTC is Randomized Tree Con-
struction (RTC) proposed in [19]. As well as CBTC, RTC chooses a center
vertex (or two center vertices if D is odd), then it iteratively chooses a vertex
outside a tree and connects it with some vertex in a tree. But in contrast to
MPCBTC, each time the vertex is chosen at random. The process is repeated
n times, and the best tree is returned. We adapted this algorithm to MPBH-
SCP. Let’s call the obtained heuristic as Min-Power Randomized Tree Con-
struction (MPRTC). Since this algorithm is also based on PLH, the only parts
that should be mentioned are the special implementations of the subroutines
ChooseF irstCenters, ChooseSecondCenter, and ChooseEachV ertex, which
are extremely simple in this case: the method ChooseF irstCenters n times
chooses a vertex v ∈ V at random, as well as it is done in RTC [19]. The both
methods ChooseSecondCenter and ChooseEachV ertex choose a vertex v ∈ U
at random (where U is a set of non-tree vertices, see Algorithm 1). This cir-
cumstance theoretically should cause better results of MPRTC comparing with
MPCBTC on high-dense graphs constructed on uniformly spread set of points,
because on each step of MPRTC the constructed partial solution consists of
random subset of V . If D is not too small, then the positions of the backbone
vertices are also uniformly spread on each step, and therefore, on average, the
weight of added edge should be rather small after some appropriate number
of steps. Because of the fact that MPRTC is repeated n times with different
randomly chosen center, its total computational complexity is O(n3).

Min-Power Center-based Least Sum-of-Costs. Another greedy algorithm
for BDMST was proposed in [23], it is called Center-based Least Sum-of-Costs.
In similar manner to CBTC and RTC, it constructs a tree iteratively adding a
vertex and an edge to the current tree. The difference of this algorithm from
the mentioned above heuristics is that it chooses a vertex outside a tree with
the minimum sum of costs of edges with other non-tree vertices. We employed
a similar strategy and called the obtained algorithm Min-Power Center-based
Least Sum-of-Costs (MPCBLSoC). But instead of minimizing the sum of the
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edge weights, we minimized the sum of the power costs in a star-like subgraph
with a center in a given vertex what is more suitable for MPBHSCP. As well as
the methods described above, MPCBLSoC is based on PLH. In this case, the
methods ChooseF irstCenters, ChooseSecondCenter, and ChooseEachV ertex
have the same implementation: given an already constructed partial tree T , there
is selected a such vertex v ∈ V \ VT , that a star graph on remaining vertices
rooted in v has minimum total power. The algorithm that chooses the best star
graph center is called FindBestStarCenter, and its pseudo-code is given in
Algorithm 2. Thus, from the one hand, since ChooseF irstCenters returns a
single vertex, the algorithm MPCBLSoC contains the only iteration. But, from
the other hand, FindBestStarCenter runs in time O(n2), and, therefore, the
total computational complexity of MPCBLSoC is O(n3).

Algorithm 2 FindBestStarCenter

Input: U ⊂ V ;
Output: center ∈ U ;
center ← ∅;
minCost←∞;
for all u ∈ U do

leavesCostSum← 0;
centerCost← 0;
for all v ∈ U \ u do

leavesCostSum← leavesCostSum+ Power(u, v);
centerCost← max(Power(u, v), centerCost);

end for

if centerCost+ leavesCostSum < minCost then
center ← u;
minCost← centerCost+ leavesCostSum;

end if

end for

return center;

3.2 Min-Power Center-based Recursive Clustering

Authors of [22] suggest another greedy heuristic called Center-based Recursive
Clustering (CBRC) for BDMST. This algorithm starts with a spanning star
tree rooted in the center, chosen in such a way that the sum of edge weights is
minimum. Then the leaves, whose depth is less than ⌊D/2⌋, are iteratively reor-
ganized into a cluster with a center in some node. On each iteration, the leaves
are reattached to a center if this improves solution and the restriction on the
number of hops is held. We called our implementation for MPBHSCPMin-Power
Center-based Recursive Clustering (MPCBRC). As a center choosing subroutine
the previously described algorithm FindBestStarCenter is used. The pseudo-
code of MPCBRC is presented in Algorithm 3. Each iteration of the algorithm
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takes O(n2) operations because of the complexity of FindBestStarCenter, and,
since there are O(n) iterations, the algorithm runs in time O(n3).

Algorithm 3 Min-Power Center-based Recursive Clustering

v0 ← FindBestStarCenter(V );
V0 ← {v0};
T ← a star graph rooted in v0;
U ← V \ {v0};
depthT [.] ← an array of size n that stores a depth for each vertex in a tree, filled
with -1;
depth(v0)← 0;
if D is odd then

v1 ← FindBestStarCenter(V0);
depthT (v1)← 0;
Add a vertex v1 and an edge (v0, v1) to T ;

end if

while U is not empty do

U0 ← {v ∈ U : depthT (v) < ⌊D/2⌋}
center← FindBestStarCenter(U0);
if center == ∅ then

break;
end if

U ← U \ {center};
for all u ∈ U do

Set powerIncrease ← {power increase after reassigning a parent of u from
ParentT (u) to center};

if powerIncrease < 0 then

T ← (T \ {(u, ParentT (u))}) ∪ {(u, center)};
depthT (u) = depthT (center) + 1;

end if

end for

end while

3.3 Min-Power Quadrant Center-based Heuristic

One of the most efficient heuristics applied to BDMST in planar Euclidian case
with uniformly distributed vertices consists in recursive splitting the given region
into equal parts (quadrants) and search of their centers [23]. We implemented
a variant of the similar approach for MPBHMSCP and called it Min-Power
Quadrant Center-based Heuristic (MPQCH). The pseudo-code of this algorithm
is given in Algorithm 4. As well as in some of the previous heuristics, it starts
with choosing a center by the algorithm FindBestStarCenter. But this time
in order to reach central symmetry we choose the only start center despite the
parity of D. Then inside the main loop the region is iteratively split into the
squared cells of equal size. For each cell, its center is chosen by the algorithm
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FindBestStarCenter and then it is added to the tree with an edge that connects
it with a center of a previous iteration’s cell that contains it, or with v0 at the
first iteration. At each iteration the number of cells four times greater than the
number of cells in the previous iteration, that is, each cell consists of four cells of
the next iteration. At each iteration the height of a constructed tree is increased
by 1, and, since stepsCount is bounded by ⌊D/2⌋, the diameter constraint is not
violated.

In our implementation, for the speed purposes, a regular rectangular grid of
size qsize×qsize is initially set on the given region, and a corresponding grid cell
is assigned to each vertex. Then, due to this grid, during the main loop the subset
of vertices that belong to each cell c ∈ C are found in constant time. Actually,
qsize is a parameter of the algorithm, and the greater value of qsize allows
to obtain better solution but increases the running time. The computational
complexity of the algorithm is O(qsize2 +min{⌊D/2⌋, log(qsize)}n2).

Algorithm 4 Min-Power Quadrant Center-based Heuristic

v0 ← FindBestStarCenter(V );
T ← ({v0}, ∅);
U ← V \ {v0};
Construct rectangular grid of size qsize× qsize on a given square;
stepsCount← min(⌊D/2⌋, log

2
(qsize));

cellCenter — an array of size n that stores a cell center for each vertex;
Fill cellCenter with v0 (initially the whole square is a single cell and the root is a
center);
for all step ∈ {1, ..., stepsCount} do

Split grid into 2step × 2step cells C of equal size;
for all c ∈ C do

Uc ← vertices of U located in c;
center ← FindBestStarCenter(Uc);
T ← T ∪ {(bestCenter, cellCenter(center))};
U ← U \ {center};
for all u ∈ Uc \ {center} do

cellCenter(u)← center;
end for

end for

end for

3.4 Min-Power Iterative Refinement

Another good approach for building spanning tree with bounded diameter is,
first, construction a tree without restriction on diameter and, after that, itera-
tively decrease depths of vertices until the restriction on diameter is satisfied.
The iterative algorithm that reduces the diameter of an input spanning tree for
BDMST has been proposed in [24]. We propose the heuristic for MPBHSCP
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called Min-Power Iterative Refinement (MPIR), which is based on the similar
idea. The pseudo-code of this algorithm is presented in Algorithm 5. At first,
a center v0 is chosen by the FindBestStarCenter subroutine. Then, a near-
optimal solution for an unbounded problem rooted in v0 is constructed by IPP

Algorithm 5 Min-Power Iterative Refinement

v0 ← FindBestStarCenter(V );
Construct spanning tree T rooted in v0 by IPP;
V0 ← {v0};
U ← V \ {v0};
depth(v0)← 0;
if D is odd then

v1 ← most remote neighbor of v0 in T ;
depthT (v1)← 0;
Add a vertex v1 and an edge (v0, v1) to T ;

end if

Calculate the values of depthT ;
U ← {v ∈ V \ {s} : depthT (v) > h};
while U is not empty do

bestChild← ∅;
bestParent← ∅;
minPowerIncrease←∞;
Mark all vertices in U as not considered;
for all u ∈ U do

C ← {u} ∪ {v ∈ V : depthT (v) > 1 & v is predecessor of u in T}
for all c ∈ {not considered elements of C} do

if c is considered then

continue;
end if

Mark c as considered;
P ← {v ∈ V : depthT (v) < min(⌊D/2⌋ − 1, depthT (c)− 1)};
for all p ∈ P do

powerIncrease←maximum power costs change of vertices c, ParentT (c),
and p after assigning p as a parent of c in T ;

if powerIncrease < minPowerIncrease then

minPowerIncrease← powerIncrease;
bestChild← c;
bestParent← p;

end if

end for

end for

end for

T ← T \ ({(bestChild, ParentT (bestChild))}) ∪ {(bestChild, bestParent)};
Decrease LevelT for all the vertices in the branch rooted in bestChild by

LevelT (bestChild)− depthT (bestParent)− 1;
U ← U \ {v ∈ U : depthT (v) ≤ ⌊D/2⌋};

end while
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[5]. If D is odd, then the most remote neighbor of v0 in T is selected as second
center. The algorithm works with a set of vertices U whose depth exceeds ⌊D/2⌋.
For each u ∈ U the best removing of an edge from the path from u to v0 and
subsequent adding another edge that decreases a depth of u and increases the
W (T ) at least is found. The best of such edge exchanges among all vertices of U
is performed. After each modification of a tree depth of some vertices in U may
be decreased, therefore, the vertices whose depth is less than ⌊D/2⌋ are removed
then from U . The computational complexity of the algorithm is O(n3).

4 Simulation

We have implemented all the described algorithms in C++ programming lan-
guage and run them on the data sets that are given in Beasley’s OR-Library
for Euclidian Steiner Problem (http://people.brunel.ac.uk/∼mastjjb/jeb/orlib).
These test cases present the random uniformly distributed points in the unit
square. For the same dimension 15 different instances are provided. We tested
4 variants of dimension: n = 100, 250, 500, and 1000, 15 instances for each. We
also took different values of D for each dimension. The experiment was launched
on the Intel Core i5-4460 3.2GHz processor with 8Gb RAM.

n D
MPCBTC MPRTC MPCBLSoC MPCBRC MPQBH MPIR

av err time av err time av err time av err time av err time av err time

100 5 8.17 0.47 0 3.6 0.13 0 8.8 0.66 0 8.41 0.79 0 5.04 0.17 0 12.1 0.48 0
10 3.38 0.21 0 1.88 0.06 0 3.5 0.31 0 3.07 0.29 0 2.06 0.07 0 1.84 0.14 0
15 1.87 0.16 0 1.75 0.07 0 1.62 0.18 0 2.39 0.17 0 2.06 0.07 0 1.19 0.05 0
25 0.92 0.05 0 1.74 0.07 0 0.96 0.03 0 2.36 0.17 0 2.06 0.07 0 0.89 0.02 0

250 10 13.2 0.93 0.07 2.32 0.07 0.09 14.1 1.56 0.02 6.98 1.28 0.02 2.44 0.04 0 5.41 0.43 0.04
15 8.17 0.65 0.08 2 0.03 0.1 7.94 0.97 0.02 3.85 0.29 0.02 2.47 0.04 0 2.6 0.46 0.05
20 4.3 0.5 0.08 2.03 0.05 0.11 3.49 0.42 0.02 3.31 0.25 0.02 2.47 0.04 0 1.48 0.22 0.04
40 0.96 0.05 0.1 2.03 0.05 0.11 0.91 0.02 0.02 3.32 0.22 0.02 2.47 0.04 0 1.04 0.26 0.02

500 15 26 1.89 0.65 2.26 0.03 1 26.6 2.5 0.14 6.24 0.78 0.14 2.62 0.03 0.03 5.1 0.49 0.33
30 6.37 0.52 0.78 2.2 0.04 1.04 4.23 0.61 0.14 3.88 0.27 0.15 2.62 0.03 0.03 1.41 0.17 0.34
45 1.87 0.19 0.8 2.2 0.04 0.94 1.1 0.09 0.13 3.89 0.25 0.15 2.62 0.03 0.03 1.04 0.11 0.23
60 0.91 0.04 0.95 2.2 0.04 1.04 0.89 0.01 0.14 3.88 0.27 0.16 2.62 0.03 0.04 0.857 0.04 0.16

1000 20 50.4 1.98 6.27 2.45 0.04 13.5 49.4 3.01 1.13 6 0.57 1.23 2.81 0.02 0.15 5.26 0.43 2.94
40 14.6 1.39 8.4 2.43 0.03 14.6 8.87 1.02 1.16 4.52 0.32 1.32 2.81 0.02 0.16 1.52 0.16 3.07
60 4.02 0.33 9.88 2.42 0.03 15.2 1.25 0.09 1.16 4.52 0.32 1.34 2.81 0.02 0.16 1.12 0.11 2.43
100 0.81 0.02 11.7 2.44 0.02 14.1 0.9 0 1.15 4.52 0.32 1.29 2.81 0.02 0.16 0.85 0.05 1.25

Table 1: Comparison of the experiment’s results obtained by different heuristics.

For the algorithm MPQCH we chose qsize = n since such value does not slow
down the algorithm match, while the solution quality is significantly greater than
in the case qsize =

√
n.

The results of the experiment are presented in Table 1. For each algorithm
and each tested combination of n and D the average objective value (av), average
time in seconds (t), and standard deviation (err) are shown. In average, when
the diameter bound is low, the best solution is constructed by MPRTC. With
large values of D MPIR constructs the best solution. Note that MPBTC and

http://people.brunel.ac.uk/~mastjjb/jeb/orlib
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MPCBLCoS results are very poor when D is small, but with large values of D
their average objective values are close to minimum. MPBTC and MPRTC ap-
peared to be the most time consuming on large dimension cases, while MPQCH
always runs significantly faster than other algorithms. Besides, MPQCH per-
formance almost does not depends on D. Most probably this is because the
maximum diameter of the constructed solution is much less than D, — this
gives us a possibility for the further improvements of this algorithm.
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(a) MPCBTC. W (T ) = 7.37
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(b) MPRTC. W (T ) = 1.99
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(c) MPCBLSoC. W (T ) = 4.78
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(d) MPCBRC. W (T ) = 3.59
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(e) MPIR. W (T ) = 2.44
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(f) MPQCH. W (T ) = 2.35

Fig. 1: Algorithms results on the same instance. D = 15, n = 250

As an illustration, we also present in Fig. 1 the solutions that were obtained
by different algorithms on the same instance when D = 15, n = 250. For the
convenience, the edges that remote from a center by an equal distance (i.e., hops
count) are colored in the same color. Since the diameter bound is odd in this case,
there are two centers (connected by a black edge) in solutions constructed by
all algorithms except MPQCH, which always builds a tree with the only center.
The difference in the behaviour of the algorithms is seen in these pictures. The
diameter bound is still not enough for MPCBTC and MPCBLSoC to construct
good solutions: in both cases the backbone is too small and there are many
leaves far from a center that are coincident with long edges (colored in red).
MPCBRC constructs a tree with a lot of long edges in backbone, since the
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backbone vertices are always chosen as center of the current set of leaves during
the tree construction. MPIR result contains a lot of vertices with large degree
that are coincident with rather long edges, that slightly deteriorate solution.
The remained two algorithms, MPRTC and MPQCH, that performed the best,
have the following common features: (1) the number of vertices increases with
increasing of their depths; (2) the average edge weight decreases with increase
of the depth. MPRTC always chooses a vertex at random, and, in average,
the distance to the closest in-tree vertex becomes less while the constructed
tree size grows. MPQCH constructs a tree whose backbone vertices are located
close to the quadrants geometric centers. Note that MPQCH built a tree with
maximum depth equal 6 while the depth upper bound is 7. This allows to improve
solution in this case: each of the longest edges that connect a center with its four
children could be replaced by two shorter edges with intermediate vertex that is
located close to edge’s geometric center. We assume that such modification will
significantly improve the solution, and we plan to implement it in future.

5 Conclusion

In this paper, the NP-hard Min-Power Bounded Hops Symmetric Connectivity
Problem was considered. We proposed six different constructive heuristics for its
approximation solution. As main ideas of our approaches, we used some of the
known heuristics that were previously developed for BDMST. We implemented
all the proposed algorithms and conducted the numerical experiment on different
randomly generated test instances. The simulation shows that in cases with
large diameter the algorithm MPIR yields the best results, while the usage of
MPRTC is more preferable when the diameter is small. If one needs to obtain a
solution of rather good quality in shortest time, then MPQCH could be the best
choice. Besides, the experiment results show that MPQCH can be significantly
improved. In future we plan to develop different variants of local search and
other metaheuristics that appeared to be efficient for BDMST, such as variable
neighborhood search, genetic algorithm, and ant colony optimization, where the
trees obtained by different algorithms proposed in this paper will serve as start
solutions.
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